ON THE EXPONENTIAL DIOPHANTINE EQUATION $x^{y}+y^{x}=z^{z}$

Xiaoying Du, Jinzhong

Received November 28, 2015. First published July 11, 2017.

Abstract. For any positive integer D which is not a square, let $\left(u_{1}, v_{1}\right)$ be the least positive integer solution of the Pell equation $u^{2}-D v^{2}=1$, and let $h(4 D)$ denote the class number of binary quadratic primitive forms of discriminant $4 D$. If D satisfies $2 \nmid D$ and $v_{1} h(4 D) \equiv 0(\bmod D)$, then D is called a singular number. In this paper, we prove that if (x, y, z) is a positive integer solution of the equation $x^{y}+y^{x}=z^{z}$ with $2 \mid z$, then maximum $\max \{x, y, z\}<480000$ and both x, y are singular numbers. Thus, one can possibly prove that the equation has no positive integer solutions (x, y, z).

Keywords: exponential diophantine equation; upper bound for solutions; singular number MSC 2010: 11D61

1. Introduction

Let \mathbb{Z}, \mathbb{N} be the sets of all integers and positive integers, respectively. In recent years, the solutions of circulant exponential diophantine equations have been investigated in many papers (see [7], [8], [9], [14], [15], [16]). In 2013, using upper bounds of linear forms in p-adic logarithms, Zhang, Luo and Yuan in [15] proved that the equation

$$
\begin{equation*}
x^{y}+y^{x}=z^{z}, \quad x, y, z \in \mathbb{N}, \tag{1.1}
\end{equation*}
$$

has only finitely many solutions (x, y, z), and all solutions (x, y, z) of (1.1) satisfy $z<2.8 \times 10^{9}$. In addition, they proposed the following conjecture:

Conjecture. The equation (1.1) has no solution (x, y, z).

This work is supported by the P.S.F. (2016JQ1040) and N.S.F. (11526162) of P. R. China.

Obviously, the upper bound given in [15] is far too large for any practical purpose. In 2014, Deng and Zhang in [5] proved that (1.1) has no solutions (x, y, z) with x and y being odd primes. Very recently, Wu in [13] proved that (1.1) has no solutions (x, y, z) with $2 \nmid z$. His proof relied upon a deep result concerning the existence of primitive divisors of Lucas and Lehmer numbers due to Bilu, Hanrot and Voutier, see [1].

In this paper we shall discuss the solutions of (1.1) with $2 \mid z$. This is the remaining and the more difficult part of (1.1). First we give a better upper bound for the solutions of (1.1) as follows:

Theorem 1.1. All solutions (x, y, z) of (1.1) with $2 \mid z$ satisfy $\max \{x, y, z\}<$ 480000.

Let D be a positive integer which is not a square. It is well known that the Pell equation

$$
\begin{equation*}
u^{2}-D v^{2}=1, \quad u, v \in \mathbb{Z} \tag{1.2}
\end{equation*}
$$

has positive integer solutions (u, v). Further, let $\left(u_{1}, v_{1}\right)$ be the least positive integer solution of (1.2), and let $h(4 D)$ denote the class number of binary quadratic primitive forms of discriminant $4 D$. If D satisfies

$$
\begin{equation*}
2 \nmid D, \quad v_{1} h(4 D) \equiv 0(\bmod D), \tag{1.3}
\end{equation*}
$$

then D is called a singular number. We give a relationship between the solutions of (1.1) and singular numbers as follows:

Theorem 1.2. If (x, y, z) is a solution of (1.1) with $2 \mid z$, then both x and y are singular numbers.

Thus, combining the computational results of $h(4 D)$ and v_{1} (see [3], [10], [12]) with our theorems, one can possibly verify the above mentioned conjecture.

2. Proof of Theorem 1.1

Lemma 2.1. Let a_{1}, a_{2} be coprime nonzero integers with $a_{1} \equiv a_{2} \equiv 1(\bmod 4)$, and let b_{1}, b_{2} be positive integers. Further, let $\Lambda=a_{1}^{b_{1}}-a_{2}^{b_{2}}$, and let $v_{2}(\Lambda)$ denote the degree of 2 in Λ. If $\min \left\{\left|a_{1}\right|,\left|a_{2}\right|\right\}>3$, then we have

$$
\begin{aligned}
v_{2}(\Lambda)< & 19.5540\left(\log \left|a_{1}\right|\right)\left(\log \left|a_{2}\right|\right) \\
& \times\left(\max \left\{12 \log 2,0.4+\log (2 \log 2)+\log \left(\frac{b_{1}}{\log \left|a_{2}\right|}+\frac{b_{2}}{\log \left|a_{1}\right|}\right)\right\}\right)^{2} .
\end{aligned}
$$

Proof. This is a special case of Theorem 2 of [4] for $p=2$. Since $\min \left\{\left|a_{1}\right|,\left|a_{2}\right|\right\}>3$ and $a_{1} \equiv a_{2} \equiv 1(\bmod 4)$, we have $\min \left\{\left|a_{1}\right|,\left|a_{2}\right|\right\}>3$. Therefore, we may choose that $E=2, g=1$ and $\log A_{i}=\log \left|a_{i}\right|$ for $i=1,2$. Thus, by the theorem, we get

$$
\begin{aligned}
v_{2}(\Lambda) \leqslant & \frac{36.1 g}{E^{3}(\log 2)^{4}}\left(\log A_{1}\right)\left(\log A_{2}\right) \\
& \times\left(\max \left\{5,6 E \log 2,0.4+\log (E \log 2)+\log \left(\frac{b_{1}}{\log A_{2}}+\frac{b_{2}}{\log A_{1}}\right)\right\}\right)^{2} \\
< & 19.5540\left(\log \left|a_{1}\right|\right)\left(\log \left|a_{2}\right|\right) \\
& \times\left(\max \left\{12 \log 2,0.4+\log (2 \log 2)+\log \left(\frac{b_{1}}{\log \left|a_{2}\right|}+\frac{b_{2}}{\log \left|a_{1}\right|}\right)\right\}\right)^{2} .
\end{aligned}
$$

The lemma is proved.
Pro of of Theorem 1.1. By [15], if (x, y, z) is a solution of (1.1), then we have

$$
\begin{equation*}
\min \{x, y, z\}>1 \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{gcd}(x, y)=\operatorname{gcd}(x, z)=\operatorname{gcd}(y, z)=1 \tag{2.2}
\end{equation*}
$$

We now assume that (x, y, z) is a solution of (1.1) with $2 \mid z$. By (2.2), we have

$$
\begin{equation*}
2 \nmid x, \quad 2 \nmid y . \tag{2.3}
\end{equation*}
$$

Without loss of generality, we may assume that $x \leqslant y$. Then, by [5] and [15], we have

$$
\begin{equation*}
3<x<z<y \tag{2.4}
\end{equation*}
$$

Further, since $z^{z}>x^{y}$ by (1.1), we get

$$
\begin{equation*}
y \log x<z \log z \tag{2.5}
\end{equation*}
$$

On the other hand, we see from (1.1) and (2.3) that

$$
\begin{equation*}
0 \equiv z^{z} \equiv x^{y}+y^{x} \equiv x+y(\bmod 4) \tag{2.6}
\end{equation*}
$$

Let

$$
\left(a_{1}, a_{2}, b_{1}, b_{2}\right)= \begin{cases}(x,-y, y, x) & \text { if } x \equiv 1(\bmod 4) \tag{2.7}\\ (y,-x, x, y) & \text { if } x \equiv 3(\bmod 4)\end{cases}
$$

By (2.6) and (2.7), we have $a_{1} \equiv a_{2} \equiv 1(\bmod 4)$. Further, let $\Lambda=a_{1}^{b_{1}}-a_{2}^{b_{2}}$, and let $v_{2}(\Lambda)$ denote the degree of 2 in Λ. By (1.1) and (2.7), we have $\Lambda=x^{y}+y^{x}=z^{z}$ and $v_{2}(\Lambda) \geqslant z$. Therefore by (2.4), using Lemma 2.1, we get

$$
\begin{align*}
z< & 19.5540(\log x)(\log y) \tag{2.8}\\
& \times\left(\max \left\{12 \log 2,0.4+\log (2 \log 2)+\log \left(\frac{x}{\log x}+\frac{y}{\log y}\right)\right\}\right)^{2} .
\end{align*}
$$

If $12 \log 2 \geqslant 0.4+\log (2 \log 2)+\log (x / \log x+y / \log y)$, then we have $2000>\mathrm{e}^{7.591}>$ $y / \log y$ and $y<25000$. Therefore, by (2.4), the theorem holds.

If $12 \log 2<0.4+\log (2 \log 2)+\log (x / \log x+y / \log y)$, then from (2.8) we get

$$
\begin{equation*}
z<19.5540(\log x)(\log y)\left(0.7271+\log \left(\frac{x}{\log x}+\frac{y}{\log y}\right)\right)^{2} . \tag{2.9}
\end{equation*}
$$

Notice that $r / \log r$ is increasing for any real number r with $r>\mathrm{e}$. By (2.4), we have $x / \log x<y / \log y$, and by (2.9), we get

$$
\begin{equation*}
z<19.5540(\log x)(\log y)\left(0.7271+\log \left(\frac{2 y}{\log y}\right)\right)^{2} \tag{2.10}
\end{equation*}
$$

Further, by (2.4), (2.5) and (2.10), we have

$$
\begin{aligned}
y & <\frac{z \log z}{\log x}<19.5540(\log y)(\log z)\left(0.7271+\log \left(\frac{2 y}{\log y}\right)\right)^{2} \\
& <19.5540(\log y)^{2}\left(0.7271+\log \left(\frac{2 y}{\log y}\right)\right)^{2}
\end{aligned}
$$

whence we conclude that $y<480000$. Thus, by (2.4), the theorem is proved.

3. Proof of Theorem 1.2

Lemma 3.1 ([2]). If X, Y, n are positive integers such that $X>Y, \operatorname{gcd}(X, Y)=1$ and $n>6$, then $X^{n}-Y^{n}$ has a prime divisor p with $p>n$.

Lemma 3.2 ([11], Theorem 8.1). Every solution (u,v) of (1.2) can be expressed as

$$
u+v \sqrt{D}=\lambda_{1}\left(u_{1}+\lambda_{2} v_{1} \sqrt{D}\right)^{s}, \quad \lambda_{1}, \lambda_{2} \in\{ \pm 1\}, s \in \mathbb{Z}, s \geqslant 0
$$

where $\left(u_{1}, v_{1}\right)$ is the least positive integer solution of (1.2).

Lemma 3.3 ([6], Theorem 1 and 2). Let D, k be positive integers such that D is not a square, $k>1,2 \nmid k$ and $\operatorname{gcd}(D, k)=1$. Every solution (X, Y, Z) of the equation

$$
X^{2}-D Y^{2}=k^{Z}, \quad X, Y, Z \in \mathbb{Z}, \operatorname{gcd}(X, Y)=1, Z>0
$$

can be expressed as

$$
X+Y \sqrt{D}=\left(X_{1}+Y_{1} \sqrt{D}\right)^{t}(u+v \sqrt{D}), \quad Z=Z_{1} t, t \in \mathbb{N}
$$

where X_{1}, Y_{1}, Z_{1} are positive integers satisfying

$$
X_{1}^{2}-D Y_{1}^{2}=k^{Z_{1}}, \quad \operatorname{gcd}\left(X_{1}, Y_{1}\right)=1, h(4 D) \equiv 0\left(\bmod Z_{1}\right)
$$

(u, v) is a solution of (1.2).
Pro of of Theorem 1.2. We now assume that (x, y, z) is a solution of (1.1) with $2 \mid z$. If x is a square, then from (2.1) and (2.3) we get $x=a^{2}$, where a is an odd integer with $a \geqslant 3$. Substituting it into (1.1), by (2.2), we have

$$
\begin{equation*}
z^{z / 2}+a^{y}=b^{a^{2}}, \quad z^{z / 2}-a^{y}=c^{a^{2}}, \quad y=b c, b, c \in \mathbb{N}, \operatorname{gcd}(b, c)=1 \tag{3.1}
\end{equation*}
$$

whence we get

$$
\begin{equation*}
2 a^{y}=b^{a^{2}}-c^{a^{2}} \tag{3.2}
\end{equation*}
$$

However, since $a^{2} \geqslant 9$, by Lemma 3.1, $b^{a^{2}}-c^{a^{2}}$ has a prime divisor p with $p>a^{2}$ and (3.2) is false. It implies that x is not a square. Similarly, we can prove that y is not a square.

We see from (1.1) and (2.3) that the equation

$$
\begin{equation*}
X^{2}-y Y^{2}=x^{Z}, \quad X, Y, Z \in \mathbb{Z}, \operatorname{gcd}(X, Y)=1, Z>0 \tag{3.3}
\end{equation*}
$$

has the solution

$$
\begin{equation*}
(X, Y, Z)=\left(z^{z / 2}, y^{(x-1) / 2}, y\right) \tag{3.4}
\end{equation*}
$$

Recall that $x>1,2 \nmid x, \operatorname{gcd}(x, y)=1$ and y is not a square. Applying Lemma 3.3 to (3.3) and (3.4), we have

$$
\begin{gather*}
y=Z_{1} t, \quad t \in \mathbb{N} \tag{3.5}\\
z^{z / 2}+y^{(x-1) / 2} \sqrt{y}=\left(X_{1}+Y_{1} \sqrt{y}\right)^{t}(u+v \sqrt{y}) \tag{3.6}
\end{gather*}
$$

where X_{1}, Y_{1}, Z_{1} are positive integers satisfying

$$
\begin{gather*}
X_{1}^{2}-y Y_{1}^{2}=x^{Z_{1}}, \quad \operatorname{gcd}\left(X_{1}, Y_{1}\right)=1 \tag{3.7}\\
h(4 y) \equiv 0\left(\bmod Z_{1}\right) \tag{3.8}
\end{gather*}
$$

(u, v) is a solution of the Pell equation

$$
\begin{equation*}
u^{2}-y v^{2}=1, \quad u, v \in \mathbb{Z} \tag{3.9}
\end{equation*}
$$

Since $z^{z / 2}+y^{(x-1) / 2} \sqrt{y}>0$ and $X_{1}+Y_{1} \sqrt{y}>0$, by Lemma 3.2, we get from (3.6) that

$$
\begin{equation*}
u+v \sqrt{y}=\left(u_{1}+\lambda v_{1} \sqrt{y}\right)^{s}, \quad \lambda \in\{ \pm 1\}, s \in \mathbb{Z}, s \geqslant 0 \tag{3.10}
\end{equation*}
$$

where $\left(u_{1}, v_{1}\right)$ is the least positive integer solution of (3.9). Substituting (3.10) into (3.6), we have

$$
\begin{equation*}
z^{z / 2}+y^{(x-1) / 2} \sqrt{y}=\left(X_{1}+Y_{1} \sqrt{y}\right)^{t}\left(u_{1}+\lambda v_{1} \sqrt{y}\right)^{s} . \tag{3.11}
\end{equation*}
$$

Let $d=\operatorname{gcd}(s, t)$. If $d>1$, since $2 \nmid t$ by (2.3) and (3.5), then d has an odd prime divisor p. Further, let

$$
\begin{equation*}
f+g \sqrt{y}=\left(X_{1}+Y_{1} \sqrt{y}\right)^{t / p}\left(u_{1}+\lambda v_{1} \sqrt{y}\right)^{s / p} \tag{3.12}
\end{equation*}
$$

By Lemmas 3.2 and 3.3, we see from (3.5), (3.7) and (3.12) that f, g are integers satisfying

$$
\begin{equation*}
f^{2}-y g^{2}=x^{y / p}, \quad \operatorname{gcd}(f, g)=1 \tag{3.13}
\end{equation*}
$$

Substituting (3.12) into (3.11), we have

$$
\begin{equation*}
z^{z / 2}+y^{(x-1) / 2} \sqrt{y}=(f+g \sqrt{y})^{p} \tag{3.14}
\end{equation*}
$$

whence we get

$$
\begin{equation*}
y^{(x-1) / 2}=g \sum_{i=0}^{(p-1) / 2}\binom{p}{2 i+1} f^{p-2 i-1}\left(y g^{2}\right)^{i} . \tag{3.15}
\end{equation*}
$$

When $p=3$, by (3.5), we have $3 \mid y$ and

$$
\begin{equation*}
y=3 l, \quad l \in \mathbb{N} \tag{3.16}
\end{equation*}
$$

Further, by (3.15) and (3.16), we get

$$
\begin{equation*}
3^{(x-3) / 2} l^{(x-1) / 2}=g\left(f^{2}+l g^{2}\right) \tag{3.17}
\end{equation*}
$$

Since $\operatorname{gcd}(f, y g)=1$ by (3.13), we have $\operatorname{gcd}(f, l g)=\operatorname{gcd}\left(f^{2}+l g^{2}, l\right)=1$. Hence, by (3.17), we get

$$
\begin{equation*}
f^{2}+l g^{2} \leqslant 3^{(x-3) / 2}, \quad l^{(x-1) / 2} \leqslant g . \tag{3.18}
\end{equation*}
$$

We find from (3.18) that $l=1$. Substituting it into (3.17), we have

$$
\begin{equation*}
3^{(x-3) / 2}=g\left(f^{2}+g^{2}\right) \tag{3.19}
\end{equation*}
$$

But, since $f^{2}+g^{2}>1$ and $3 \nmid f^{2}+g^{2}$, (3.19) is false.
When $p>3$, since $p \mid y$ and $\operatorname{gcd}(f, y)=1$, we have

$$
\begin{equation*}
\binom{p}{2 i+1} f^{p-2 i-1}\left(y g^{2}\right)^{i} \equiv 0\left(\bmod p^{2}\right), \quad i=1, \ldots, \frac{p-1}{2} \tag{3.20}
\end{equation*}
$$

$$
\begin{equation*}
p \| \sum_{i=0}^{(p-1) / 2}\binom{p}{2 i+1} f^{p-2 i-1}\left(y g^{2}\right)^{i} \tag{3.21}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{gcd}\left(y, \frac{1}{p} \sum_{i=0}^{(p-1) / 2}\binom{p}{2 i+1} f^{p-2 i-1}\left(y g^{2}\right)^{i}\right)=1 \tag{3.22}
\end{equation*}
$$

Hence, we see from (3.15) and (3.22) that

$$
\begin{equation*}
p=\sum_{i=0}^{(p-1) / 2}\binom{p}{2 i+1} f^{p-2 i-1}\left(y g^{2}\right)^{i}>p \tag{3.23}
\end{equation*}
$$

a contradiction. Therefore, we obtain

$$
\begin{equation*}
\operatorname{gcd}(s, t)=1 \tag{3.24}
\end{equation*}
$$

Let

$$
\begin{equation*}
X+Y \sqrt{y}=\left(X_{1}+Y_{1} \sqrt{y}\right)^{t} . \tag{3.25}
\end{equation*}
$$

Since $2 \nmid t$, by (3.10) and (3.25), we have
(3.26) $u=\sum_{i=0}^{[s / 2]}\binom{s}{2 i} u_{1}^{s-2 i}\left(y v_{1}^{2}\right)^{i}, \quad v=\lambda v_{1} \sum_{i=0}^{[(s-1) / 2]}\binom{s}{2 i+1} u_{1}^{s-2 i-1}\left(y v_{1}^{2}\right)^{i}$,

$$
X=\sum_{i=0}^{(t-1) / 2}\binom{t}{2 i} X_{1}^{t-2 i}\left(y Y_{1}^{2}\right)^{i}, \quad Y=Y_{1} \sum_{i=0}^{(t-1) / 2}\binom{t}{2 i+1} X_{1}^{t-2 i-1}\left(y Y_{1}^{2}\right)^{i}
$$

where $[s / 2]$ and $[(s-1) / 2]$ are integer parts of $s / 2$ and $(s-1) / 2$, respectively. Substituting (3.25) into (3.6), we have

$$
z^{z / 2}+y^{(x-1) / 2} \sqrt{y}=(X+Y \sqrt{y})(u+v \sqrt{y}),
$$

whence we get

$$
\begin{equation*}
y^{(x-1) / 2}=X v+Y u . \tag{3.27}
\end{equation*}
$$

By (3.26), we have

$$
\begin{align*}
& u \equiv u_{1}^{s}(\bmod y), \quad v \equiv \lambda s u_{1}^{s-1} v_{1}(\bmod y) \tag{3.28}\\
& X \equiv X_{1}^{t}(\bmod y), \quad Y \equiv t X_{1}^{t-1} Y_{1}(\bmod y) .
\end{align*}
$$

Since $x>1$, by (3.27) and (3.28), we get

$$
\begin{equation*}
D \equiv y^{(x-1) / 2} \equiv X v+Y u \equiv X_{1}^{t}\left(\lambda s u_{1}^{s-1} v_{1}\right)+t X_{1}^{t-1} Y_{1}\left(u_{1}^{s}\right)(\bmod y) \tag{3.29}
\end{equation*}
$$

Further, by (3.7) and (3.9), we have $\operatorname{gcd}\left(X_{1}, y\right)=\operatorname{gcd}\left(u_{1}, y\right)=1$. We see from (3.29) that

$$
\begin{equation*}
\lambda s X_{1} v_{1}+t Y_{1} u_{1} \equiv 0(\bmod y) \tag{3.30}
\end{equation*}
$$

Furthermore, since $t \mid y$ by (3.5), we obtain from (3.24) and (3.30) that

$$
\begin{equation*}
v_{1} \equiv 0(\bmod t) . \tag{3.31}
\end{equation*}
$$

Therefore, the combination of (3.5), (3.8) and (3.31) yields

$$
v_{1} h(4 y) \equiv 0(\bmod y)
$$

It implies that y is a singular number.
By the symmetry of x and y in (1.1), using the same method as above, we can prove that x is a singular number too. Thus, the theorem is proved.

References

[1] Y. Bilu, G. Hanrot, P. M. Voutier: Existence of primitive divisors of Lucas and Lehmer numbers. J. Reine Angew. Math. 539 (2001), 75-122.
zbl MR doi
[2] G.D. Birkhoff, H.S. Vandiver: On the integral divisors of $a^{n}-b^{n}$. Ann. of Math. (2) 5 (1904), 173-180.
zbl MR doi
[3] D. A. Buell: Computer computation of class groups of quadratic number fields. Congr. Numerantium 22 (McCarthy et al., eds.). Conf. Proc. Numerical Mathematics and Computing, Winnipeg 1978, 1979, pp. 3-12.
zbl MR
[4] Y. Bugeaud: Linear forms in p-adic logarithms and the Diophantine equation $\left(x^{n}-1\right) /$ $(x-1)=y^{q}$. Math. Proc. Camb. Philos. Soc. 127 (1999), 373-381.
zbl MR doi
[5] Y. Deng, W. Zhang: On the odd prime solutions of the Diophantine equation $x^{y}+$ $y^{x}=z^{z}$. Abstr. Appl. Anal. 2014 (2014), Art. ID 186416, 4 pages.
[6] M. Le: Some exponential Diophantine equations. I: The equation $D_{1} x^{2}-D_{2} y^{2}=\lambda k^{z}$. J. Number Theory 55 (1995), 209-221.
[7] M. Le: On the Diophantine equation $y^{x}-x^{y}=z^{2}$. Rocky Mt. J. Math. 37 (2007), 1181-1185.
zbl MR doi
[8] Y. N. Liu, X. Y. Guo: A Diophantine equation and its integer solutions. Acta Math. Sin., Chin. Ser. 53 (2010), 853-856.

Zbl MR
[9] F. Luca, M. Mignotte: On the equation $y^{x} \pm x^{y}=z^{2}$. Rocky Mt. J. Math. 30 (2000), 651-661.
[10] R. A. Mollin, H. C. Williams: Computation of the class number of a real quadratic field. Util. Math. 41 (1992), 259-308.
zbl MR doi
[11] L. J. Mordell: Diophantine Equations. Pure and Applied Mathematics 30, Academic Press, London, 1969.
12] A. J. van der Poorten, H. J. J.te Riele, H. C. Williams: Computer verification of the Ankeny-Artin-Chowla conjecture for all primes less than 100000000000 . Math. Comput. 70 (2001), 1311-1328; corrig. ibid. 72 (2003), 521-523.
zbl MR doi
[13] H. $W u$: The application of BHV theorem to the Diophantine equation $x^{y}+y^{x}=z^{z}$. Acta Math. Sin., Chin. Ser. 58 (2015), 679-684.

Zbl MR
[14] Z. Zhang, J. Luo, P. Yuan: On the Diophantine equation $x^{y}-y^{x}=c^{z}$. Colloq. Math. 128 (2012), 277-285.
zbl MR doi
[15] Z. Zhang, J. Luo, P. Yuan: On the Diophantine equation $x^{y}+y^{x}=z^{z}$. Chin. Ann. Math., Ser. A 34A (2013), 279-284.
zbl MR
[16] Z. Zhang, P. Yuan: On the Diophantine equation $a x^{y}+b y^{z}+c z^{x}=0$. Int. J. Number Theory 8 (2012), 813-821.
zbl MR doi
Author's address: Xiaoying Du, School of Mathematics, Jinzhong University, Wenhua Street 199, Yuci Qu, Jinzhong 030619, Shanxi, P. R. China, duxiaoying83@163.com.

