DISJOINT HYPERCYCLIC POWERS OF WEIGHTED TRANSLATIONS ON GROUPS

Liang Zhang, Hui-Qiang Lu, Xiao-Mei Fu, Ze-Hua Zhou, Tianjin

Received April 27, 2016. First published August 10, 2017.

Abstract

Let G be a locally compact group and let $1 \leqslant p<\infty$. Recently, Chen et al. characterized hypercyclic, supercyclic and chaotic weighted translations on locally compact groups and their homogeneous spaces. There has been an increasing interest in studying the disjoint hypercyclicity acting on various spaces of holomorphic functions. In this note, we will study disjoint hypercyclic and disjoint supercyclic powers of weighted translation operators on the Lebesgue space $L^{p}(G)$ in terms of the weights. Sufficient and necessary conditions for disjoint hypercyclic and disjoint supercyclic powers of weighted translations generated by aperiodic elements on groups will be given.

Keywords: disjoint hypercyclic powers of weighted translations; aperiodic element; locally compact group

MSC 2010: 47A16, 47B38, 46E15

1. Introduction

Let T be a continuous linear self-map on a separable infinite dimensional Banach space X and let T^{n} denote the nth iterate of T. If there exists a vector $x \in X$ such that the orbit $\operatorname{orb}(T, x)=\left\{T^{n} x: n=0,1, \ldots\right\}$ is dense in X, then T is called hypercyclic. Such a vector x is said to be hypercyclic for T. Besides, for every pair U, V of nonempty open subsets of X, if there is a nonnegative integer m such that $T^{m}(U) \cap V \neq \emptyset$, then we call T topologically transitive. It is well known that an operator T is hypercyclic if and only if it is topologically transitive. A stronger condition is the following: the operator T on X is called topologically mixing if for every pair of nonempty open subsets U and V of X there is $m \in \mathbb{N}$ such that $T^{n}(U)$

[^0] (Grant Nos. 11371276; 11301373; 11401426; 11401431; 61505140; 61571323).
meets V for each $n \geqslant m$. Hypercyclicity and supercyclicity have been studied by many authors; we refer to [1], [10], [18] for surveys.

Hypercyclic (respectively, supercyclic) operators $T_{1}, \ldots, T_{N}, N \geqslant 2$, acting on the same space X are said to be disjoint or d-hypercyclic (respectively, d-supercyclic) provided there is some $x \in X$ for which the vector $(x, \ldots, x) \in X^{N}$ is hypercyclic (respectively, supercyclic) for the direct sum operator $\bigoplus_{i=1}^{N} T_{i}$ acting on the product space X^{N}, endowed with the product topology. Besides, we say that operators T_{1}, \ldots, T_{N} in $B(X)$ are d-topologically transitive provided for any nonempty open subsets V_{0}, \ldots, V_{N} of X there exists $m \in \mathbb{N}$ such that

$$
V_{0} \cap T_{1}^{-m}\left(V_{1}\right) \cap \ldots \cap T_{N}^{-m}\left(V_{N}\right) \neq \emptyset .
$$

If T_{1}, \ldots, T_{N} satisfy the stronger condition that

$$
V_{0} \cap T_{1}^{-m}\left(V_{1}\right) \cap \ldots \cap T_{N}^{-m}\left(V_{N}\right) \neq \emptyset
$$

for some m onwards, then T_{1}, \ldots, T_{N} are said to be d-mixing. There has been an increasing interest in studying the disjoint hypercyclicity acting on different spaces of holomorphic functions. For example, disjoint hypercyclicity was studied in [2], [3], [4], [16], [17]. Besides, disjoint hypercyclic and supercyclic powers of weighted backward shifts were also characterized in [5], [6], [15].

Recently, hypercyclic, supercyclic and chaotic weighted translations on locally compact groups and their homogeneous spaces were characterized in [8], [9], [7]. And Liang et al. characterized d-hypercyclicity and d-supercyclicity of finite tuples of weighted translations generated by aperiodic elements in [12], [14]. Inspired by their work, we characterize disjoint hypercyclic powers of weighted translations on groups in this paper by developing further the results in [9], [7].

Throughout, let G be a locally compact group with identity e and a right-invariant Haar measure λ. Since a complex Banach space admits a hypercyclic operator if and only if it is separable and infinite-dimensional, the question of hypercyclicity is meaningful for the complex Lebesgue space $L^{p}(G)$, with respect to λ, only when G is second countable and $1 \leqslant p<\infty$. A bounded measurable function $w: G \rightarrow(0, \infty)$ is called a weight on G. Let $a \in G$ and let δ_{a} be the unit point mass at a. A weighted translation on G is a weighted convolution operator $T_{a, w}: L^{p}(G) \rightarrow L^{p}(G)$ defined by

$$
T_{a, w}(f):=w T_{a}(f), \quad f \in L^{p}(G)
$$

where w is a weight on G and $T_{a}(f)=f * \delta_{a} \in L^{p}(G)$ is the convolution:

$$
\left(f * \delta_{a}\right)(x)=\int_{G} f\left(x y^{-1}\right) \mathrm{d} \delta_{a}(y)=f\left(x a^{-1}\right), \quad x \in G
$$

An element a in a group G is called a torsion element if it is of finite order. In a locally compact group G, an element $a \in G$ is called periodic [11] (or compact [13], 9.9) if the closed subgroup $G(a)$ generated by a is compact. We call an element in G aperiodic if it is not periodic. For discrete groups, periodic elements and torsion elements are identical; in other words, aperiodic elements are nontorsion elements. However, nontorsion elements in nondiscrete groups need not be aperiodic. It has been shown in [9], Lemma 1.1, that a weighted translation operator is not hypercyclic if it is generated by a torsion element. Our goal in this paper is to characterize disjoint hypercyclic powers of weighted translations generated by aperiodic elements on groups.

2. Disjoint hypercyclic powers of weighted translations

It has been shown in [9], Lemma 2.1, that an element a in a locally compact group G is aperiodic if and only if for any compact subset $K \subseteq G$, there exists $m \in \mathbb{N}$ such that $K \cap K a^{n}=\emptyset$ (equivalently, $K \cap K a^{-n}=\emptyset$) for $n>m$. In this section, we will make use of the equivalence of dense d-hypercyclicity and d-topological transitivity [6] to obtain the main result. We are now ready to give sufficient and necessary conditions for disjoint hypercyclic powers of weighted translations generated by aperiodic elements on groups.

Theorem 2.1. Let G be a locally compact group, and let a be an aperiodic element in G. Let $1 \leqslant p<\infty$ and $1 \leqslant r_{1}<r_{2}<\ldots<r_{N}$, where $N \geqslant 2, r_{i} \in \mathbb{N}$, $i=1, \ldots, N$. For each $1 \leqslant l \leqslant N$, let $w_{l}: G \rightarrow(0, \infty)$ be a weight on G and $T_{a, w_{l}}$ a weighted translation on $L^{p}(G)$. The following conditions are equivalent:
(i) $T_{a, w_{1}}^{r_{1}}, \ldots, T_{a, w_{N}}^{r_{N}}$ are densely d-hypercyclic.
(ii) For $1 \leqslant l \leqslant N$ and each compact subset $K \subseteq G$ with $\lambda(K)>0$, there is a sequence of Borel sets $\left(E_{k}\right)$ in K such that $\lambda(K)=\lim _{k \rightarrow \infty} \lambda\left(E_{k}\right)$ and for the sequences

$$
\varphi_{l, n}:=\prod_{s=1}^{r_{l} n} w_{l} * \delta_{a^{-1}}^{s} \quad \text { and } \quad \widetilde{\varphi}_{l, n}:=\left(\prod_{s=0}^{r_{l} n-1} w_{l} * \delta_{a}^{s}\right)^{-1}
$$

there exists an increasing subsequence $\left(n_{k}\right) \subseteq \mathbb{N}$ satisfying

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left\|\left.\varphi_{l, n_{k}}\right|_{E_{k}}\right\|_{\infty}=\lim _{k \rightarrow \infty}\left\|\left.\widetilde{\varphi}_{l, n_{k}}\right|_{E_{k}}\right\|_{\infty}=0 \tag{2.1}
\end{equation*}
$$

and, if $1 \leqslant s<l<N$,

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left\|\left.\frac{\prod_{t=1}^{r_{s} n_{k}} w_{s} * \delta_{a^{-1}}^{t-r_{1} n_{k}}}{\prod_{t=0}^{r_{l} n_{k}-1} w_{l} * \delta_{a}^{t}}\right|_{E_{k}}\right\|_{\infty}=\lim _{k \rightarrow \infty}\left\|\left.\frac{\prod_{t=1}^{r_{l} n_{k}} w_{l} * \delta_{a^{-1}}^{t-r_{s} n_{k}}}{\prod_{t=0}^{r_{s} n_{k}-1} w_{s} * \delta_{a}^{t}}\right|_{E_{k}}\right\|_{\infty}=0 . \tag{2.2}
\end{equation*}
$$

Proof. (ii) \Rightarrow (i). By Proposition 2.3 in [6], we show that $T_{a, w_{1}}^{r_{1}}, \ldots, T_{a, w_{N}}^{r_{N}}$ are d-topologically transitive. Let V_{0}, \ldots, V_{N} be nonempty open subsets of $L^{p}(G)$. Since the space $C_{c}(G)$ of continuous functions on G with compact support is dense in $L^{p}(G)$, we can pick $f, g_{1}, \ldots, g_{N} \in C_{c}(G)$ with $f \in V_{0}, g_{1} \in V_{1}, \ldots, g_{N} \in V_{N}$. Let K be the union of the compact supports of f, g_{1}, \ldots, g_{N} and let $\chi_{K} \in L^{p}(G)$ be the characteristic function of K. For $1 \leqslant l \leqslant N$ and a compact subset K of G, let $\left(E_{k}\right)$ and $\left(n_{k}\right)$ be as in (2.1) and (2.2).

Due to the aperiodicity of a, there exists $M \in \mathbb{N}$ such that $K \cap K a^{ \pm n}=\emptyset$ for all $n>M$.

For $1 \leqslant l \leqslant N$, we define a self-map $S_{a, w_{l}}$ on the subspace $L_{c}^{p}(G)$ consisting of functions in $L^{p}(G)$ with compact support by

$$
S_{a, w_{l}}(h)=\frac{h}{w_{l}} * \delta_{a^{-1}}, \quad h \in L_{c}^{p}(G)
$$

so that

$$
T_{a, w_{l}}^{r_{l} n_{k}} S_{a, w_{l}}^{r_{l} n_{k}}(h)=h, \quad h \in L_{c}^{p}(G) .
$$

We claim that (2.1) and (2.2) imply the following four equalities:

$$
\begin{gathered}
\lim _{k \rightarrow \infty}\left\|T_{a, w_{l}}^{r_{l} n_{k}}\left(f \chi_{E_{k}}\right)\right\|_{p}=0 \\
\lim _{k \rightarrow \infty}\left\|S_{a, w_{l}}^{r_{l} n_{k}}\left(g_{l} \chi_{E_{k}}\right)\right\|_{p}=0 \\
\lim _{k \rightarrow \infty}\left\|T_{a, w_{l}}^{r_{l} n_{k}} S_{a, w_{s} r_{s} n_{k}}\left(g_{s} \chi_{E_{k}}\right)\right\|_{p}=0 ; \\
\lim _{k \rightarrow \infty}\left\|T_{a, w_{s}}^{r_{s} n_{k}} S_{a, w_{l}}^{r_{1} n_{k}}\left(g_{l} \chi_{E_{k}}\right)\right\|_{p}=0 .
\end{gathered}
$$

We prove the first of the four equalities here; the other ones follow similarly. Since $\lim _{k \rightarrow \infty}\left\|\left.\varphi_{l, n_{k}}\right|_{E_{k}}\right\|_{\infty}=0$, given any $\varepsilon>0$, there exists a positive integer $m \in \mathbb{N}$ such that $n_{k}>M$ and $\varphi_{l, n_{k}}^{p}<\varepsilon /\|f\|_{p}^{p}$ on E_{k} if $k>m$. Hence

$$
\begin{aligned}
\| T_{a, w_{l}}^{r_{l} n_{k}}(& \left.f \chi_{E_{k}}\right) \|_{p}^{p} \\
& =\int_{E_{k} a^{r_{l} n_{k}}}\left|w_{l}(x) w_{l}\left(x a^{-1}\right) \ldots w_{l}\left(x a^{-\left(r_{l} n_{k}-1\right)}\right)\right|^{p}\left|f\left(x a^{-r_{l} n_{k}}\right)\right|^{p} \mathrm{~d} \lambda(x) \\
& =\int_{E_{k}}\left|w_{l}\left(x a^{r_{l} n_{k}}\right) w_{l}\left(x a^{r_{l} n_{k}-1}\right) \ldots w_{l}(x a)\right|^{p}|f(x)|^{p} \mathrm{~d} \lambda(x) \\
& =\int_{E_{k}}\left|\varphi_{l, n_{k}}^{p}(x) \| f(x)\right|^{p} \mathrm{~d} \lambda(x)<\varepsilon, \quad \text { for } k>m .
\end{aligned}
$$

The first equality follows by the arbitrariness of ε.

For each $k \in \mathbb{N}$, let

$$
v_{k}=f \chi_{E_{k}}+\sum_{i=1}^{N} S_{a, w_{i}}^{r_{i} n_{k}}\left(g_{i} \chi_{E_{k}}\right) \in L^{p}(G)
$$

Then

$$
\left\|v_{k}-f\right\|_{p}^{p} \leqslant\|f\|_{\infty}^{p} \lambda\left(K \backslash E_{k}\right)+\sum_{i=1}^{N}\left\|S_{a, w_{i}}^{r_{i} n_{k}}\left(g_{i} \chi_{E_{k}}\right)\right\|_{p}^{p}
$$

and

$$
\begin{aligned}
& \left\|T_{a, w_{l}}^{r_{l} l_{k}} v_{k}-g_{l}\right\|_{p}^{p} \leqslant\left\|T_{a, w_{l}}^{r_{l} n_{k}}\left(f \chi_{E_{k}}\right)\right\|_{p}^{p}+\left\|\sum_{i=1}^{N} T_{a, w_{l}}^{r_{l} n_{k}} S_{a, w_{i}}^{r_{i} n_{k}}\left(g_{i} \chi_{E_{k}}\right)-g_{l}\right\|_{p}^{p} \\
& \quad \leqslant\left\|T_{a, w_{l}}^{r_{l} n_{k}}\left(f \chi_{E_{k}}\right)\right\|_{p}^{p}+\left\|g_{l}\right\|_{\infty}^{p} \lambda\left(K \backslash E_{k}\right)+\sum_{i \neq l}^{N}\left\|T_{a, w_{l}}^{r_{l} n_{k}} S_{a, w_{i}}^{r_{i} n_{k}}\left(g_{i} \chi_{E_{k}}\right)\right\|_{p}^{p}
\end{aligned}
$$

Hence $\lim _{k \rightarrow \infty} v_{k}=f$ and $\lim _{k \rightarrow \infty} T_{a, w_{l}}^{r_{l} n_{k}} v_{k}=g_{l}$, which implies

$$
V_{0} \cap T_{a, w_{1}}^{-r_{1} n_{k}}\left(V_{1}\right) \cap \ldots \cap T_{a, w_{N}}^{-r_{N} n_{k}}\left(V_{N}\right) \neq \emptyset \quad \text { for some } k .
$$

(i) \Rightarrow (ii). Let $T_{a, w_{1}}^{r_{1}}, \ldots, T_{a, w_{N}}^{r_{N}}$ be densely d-hypercyclic. Let $K \subseteq G$ be a compact set with $\lambda(K)>0$. Let $\varepsilon>0$. By the aperiodicity of a, there exists $M \in \mathbb{N}$ such that $K \cap K a^{ \pm n}=\emptyset$ for all $n>M$. Let $\chi_{K} \in L^{p}(G)$ be the characteristic function of K. Choose $0<\delta<\varepsilon /(1+\varepsilon)$. By assumption, there exists a d-hypercyclic vector $f \in L^{p}(G)$ and some $m>M$ such that for $1 \leqslant l \leqslant N$,

$$
\begin{equation*}
\left\|f-\chi_{K}\right\|_{p}<\delta^{2} \quad \text { and } \quad\left\|T_{a, w_{l}}^{r_{l} m} f-\chi_{K}\right\|_{p}<\delta^{2} \tag{2.3}
\end{equation*}
$$

Let $A_{\delta}=\{x \in K:|f(x)-1| \geqslant \delta\}$. Then we have

$$
\begin{equation*}
|f(x)|>1-\delta \quad\left(x \in K \backslash A_{\delta}\right) \tag{2.4}
\end{equation*}
$$

and $\lambda\left(A_{\delta}\right)<\delta^{p}$, since

$$
\begin{aligned}
\delta^{2 p} & >\left\|f-\chi_{K}\right\|_{p}^{p}=\int_{G}\left|f(x)-\chi_{K}(x)\right|^{p} \mathrm{~d} \lambda(x) \\
& \geqslant \int_{K}|f(x)-1|^{p} \mathrm{~d} \lambda(x) \geqslant \int_{A_{\delta}}|f(x)-1|^{p} \mathrm{~d} \lambda(x) \geqslant \delta^{p} \lambda\left(A_{\delta}\right) .
\end{aligned}
$$

Similarly, if $B_{\delta}=\{x \in G \backslash K:|f(x)| \geqslant \delta\}$, then we have

$$
\begin{equation*}
|f(x)|<\delta \quad \text { for } x \in(G \backslash K) \backslash B_{\delta} \tag{2.5}
\end{equation*}
$$

and $\lambda\left(B_{\delta}\right)<\delta^{p}$.

Let $C_{l, m, \delta}=\left\{x \in K:\left|\widetilde{\varphi}_{l, m}(x)^{-1} f\left(x a^{-r_{l} m}\right)-1\right| \geqslant \delta\right\}$. Then we have

$$
\begin{equation*}
\widetilde{\varphi}_{l, m}(x)^{-1}\left|f\left(x a^{-r_{l} m}\right)\right|>1-\delta \quad\left(x \in K \backslash C_{l, m, \delta}\right) \tag{2.6}
\end{equation*}
$$

and $\lambda\left(C_{l, m, \delta}\right)<\delta^{p}$. In fact,

$$
\begin{aligned}
\delta^{2 p} & >\left\|T_{a, w_{l}}^{r_{l} m} f-\chi_{K}\right\|_{p}^{p}=\int_{G}\left|T_{a, w_{l}}^{r_{l} m} f(x)-\chi_{K}(x)\right|^{p} \mathrm{~d} \lambda(x) \\
& \geqslant \int_{C_{l, m, \delta}}\left|w_{l}(x) w_{l}\left(x a^{-1}\right) \ldots w_{l}\left(x a^{-\left(r_{l} m-1\right)}\right) f\left(x a^{-r_{l} m}\right)-1\right|^{p} \mathrm{~d} \lambda(x) \\
& =\int_{C_{l, m, \delta}}\left|\widetilde{\varphi}_{l, m}(x)^{-1} f\left(x a^{-r_{l} m}\right)-1\right|^{p} \mathrm{~d} \lambda(x) \\
& \geqslant \delta^{p} \lambda\left(C_{l, m, \delta}\right)
\end{aligned}
$$

Let $D_{l, m, \delta}=\left\{x \in K:\left|\varphi_{l, m}(x) f(x)\right| \geqslant \delta\right\}$. Then we have

$$
\begin{equation*}
\varphi_{l, m}(x)|f(x)|<\delta \quad\left(x \in K \backslash D_{l, m, \delta}\right) \tag{2.7}
\end{equation*}
$$

and $\lambda\left(D_{l, m, \delta}\right)<\delta^{p}$. In fact, since $K \cap K a^{r_{l} m}=\emptyset$, we deduce

$$
\begin{aligned}
\delta^{2 p} & >\int_{G}\left|w_{l}(x) w_{l}\left(x a^{-1}\right) \ldots w_{l}\left(x a^{-\left(r_{l} m-1\right)}\right) f\left(x a^{-r_{l} m}\right)-\chi_{K}(x)\right|^{p} \mathrm{~d} \lambda(x) \\
& =\int_{G}\left|w_{l}\left(x a^{r_{l} m}\right) w_{l}\left(x a^{r_{l} m-1}\right) \ldots w_{l}(x a) f(x)-\chi_{K}\left(x a^{r_{l} m}\right)\right|^{p} \mathrm{~d} \lambda(x) \\
& \geqslant \int_{D_{l, m, \delta}}\left|w_{l}\left(x a^{r_{l} m}\right) w_{l}\left(x a^{r_{l} m-1}\right) \ldots w_{l}(x a) f(x)\right|^{p} \mathrm{~d} \lambda(x) \\
& =\int_{D_{l, m, \delta}}\left|\varphi_{l, m}(x) f(x)\right|^{p} \mathrm{~d} \lambda(x) \\
& \geqslant \delta^{p} \lambda\left(D_{l, m, \delta}\right) .
\end{aligned}
$$

Let $F_{l, m, \delta}=\left\{x \in G \backslash K:\left|\widetilde{\varphi}_{l, m}(x)^{-1} f\left(x a^{-r_{l} m}\right)\right| \geqslant \delta\right\}$. Then we have

$$
\begin{equation*}
\left|\widetilde{\varphi}_{l, m}(x)^{-1} f\left(x a^{-r_{l} m}\right)\right|<\delta \quad \text { for } x \in(G \backslash K) \backslash F_{l, m, \delta} \tag{2.8}
\end{equation*}
$$

and $\lambda\left(F_{l, m, \delta}\right)<\delta^{p}$, since

$$
\begin{aligned}
\delta^{2 p} & >\int_{G \backslash K}\left|w_{l}(x) w_{l}\left(x a^{-1}\right) \ldots w_{l}\left(x a^{-\left(r_{l} m-1\right)}\right) f\left(x a^{-r_{l} m}\right)\right|^{p} \mathrm{~d} \lambda(x) \\
& \geqslant \int_{F_{l, m, \delta}}\left|w_{l}(x) w_{l}\left(x a^{-1}\right) \ldots w_{l}\left(x a^{-\left(r_{l} m-1\right)}\right) f\left(x a^{-r_{l} m}\right)\right|^{p} \mathrm{~d} \lambda(x) \\
& =\int_{F_{l, m, \delta}}\left|\widetilde{\varphi}_{l, m}(x)^{-1} f\left(x a^{-r_{l} m}\right)\right|^{p} \mathrm{~d} \lambda(x) \\
& \geqslant \delta^{p} \lambda\left(F_{l, m, \delta}\right) .
\end{aligned}
$$

Now, (2.5), (2.6) and the fact that $K \cap K a^{-r_{l} m}=\emptyset$ imply that

$$
\widetilde{\varphi}_{l, m}(x)<\frac{\left|f\left(x a^{-r_{l} m}\right)\right|}{1-\delta}<\frac{\delta}{1-\delta}<\varepsilon \quad \text { for } x \in K \backslash\left(C_{l, m, \delta} \cup B_{\delta} a^{r_{l} m}\right) ;
$$

(2.4) and (2.7) imply that

$$
\varphi_{l, m}(x)<\frac{\delta}{|f(x)|}<\frac{\delta}{1-\delta}<\varepsilon \quad \text { for } x \in K \backslash\left(D_{l, m, \delta} \cup A_{\delta}\right) .
$$

By (2.6) and (2.8), for $x \in K \backslash\left(C_{l, m, \delta} \cup a^{\left(r_{l}-r_{s}\right) m} F_{s, m, \delta}\right)$ we have

$$
\begin{aligned}
\frac{w_{l}(x) \ldots w_{l}\left(x a^{-\left(r_{l} m-1\right)}\right)}{w_{s}\left(x a^{1-r_{l} m}\right) \ldots w_{s}\left(x a^{r_{s} m-r_{l} m}\right)} & =\frac{w_{l}(x) \ldots w_{l}\left(x a^{-\left(r_{l} m-1\right)}\right)\left|f\left(x a^{-r_{l} m}\right)\right|}{w_{s}\left(x a^{1-r_{l} m}\right) \ldots w_{s}\left(x a^{r_{s} m-r_{l} m}\right)\left|f\left(x a^{-r_{l} m}\right)\right|} \\
& =\frac{\widetilde{\varphi}_{l, m}(x)^{-1}\left|f\left(x a^{-r_{l} m}\right)\right|}{\widetilde{\varphi}_{s, m}\left(x a^{\left(r_{s}-r_{l}\right) m}\right)^{-1}\left|f\left(x a^{\left(r_{s}-r_{l}\right) m} a^{-r_{s} m}\right)\right|} \\
& >\frac{1-\delta}{\delta}>\frac{1}{\varepsilon} \quad \text { if } 1 \leqslant s<l \leqslant N .
\end{aligned}
$$

Similarly, for $x \in K \backslash\left(C_{s, m, \delta} \cup a^{\left(r_{s}-r_{l}\right) m} F_{l, m, \delta}\right)$ we have

$$
\frac{w_{s}(x) \ldots w_{s}\left(x a^{1-r_{s} m}\right)}{w_{l}\left(x a^{1-r_{s} m}\right) \ldots w_{l}\left(x a^{r_{l} m-r_{s} m}\right)}>\frac{1}{\varepsilon} \quad \text { if } 1 \leqslant s<l \leqslant N .
$$

Let

$$
\begin{aligned}
\widetilde{B}_{m, \delta} & =B_{\delta} a^{r_{1} m} \cup \ldots \cup B_{\delta} a^{r_{N} m}, \\
\widetilde{C}_{m, \delta} & =C_{1, m, \delta} \cup \ldots \cup C_{N, m, \delta}, \\
\widetilde{D}_{m, \delta} & =D_{1, m, \delta} \cup \ldots \cup D_{N, m, \delta}, \\
\widetilde{F}_{m, \delta} & =\bigcup_{1 \leqslant s<l \leqslant N} a^{\left(r_{l}-r_{s}\right) m} F_{s, m, \delta}, \\
\widetilde{G}_{m, \delta} & =\bigcup_{1 \leqslant s<l \leqslant N} a^{\left(r_{s}-r_{l}\right) m} F_{l, m, \delta} .
\end{aligned}
$$

Now, let $H_{m, \delta}=A_{\delta} \cup \widetilde{B}_{m, \delta} \cup \widetilde{C}_{m, \delta} \cup \widetilde{D}_{m, \delta} \cup \widetilde{F}_{m, \delta} \cup \widetilde{G}_{m, \delta}, E_{m, \delta}=K \backslash H_{(m, \delta)}$. Then $\lambda\left(H_{m, \delta}\right)<(1+N)^{2} \delta^{p}<(1+N)^{2} \varepsilon^{p}$ and

$$
\begin{align*}
\left\|\left.\varphi_{l, m}\right|_{E_{m, \delta}}\right\|_{\infty}<\varepsilon, \quad\left\|\left.\widetilde{\varphi}_{l, m}\right|_{E_{m, \delta}}\right\|_{\infty}<\varepsilon, \tag{2.9}\\
\left\|\left.\frac{\prod_{t=1}^{r_{s} m} w_{s} * \delta_{a-1}^{t-r_{l} m}}{\prod_{t=0}^{r_{l} m-1} w_{l} * \delta_{a}^{t}}\right|_{E_{m, \delta}}\right\|_{\infty}<\varepsilon, \quad\left\|\left.\frac{\prod_{t=1}^{r_{t} w_{l}} w_{l} * \delta_{a-1}^{t-r_{s} m}}{\prod_{t=0}^{r_{s} m-1} w_{s} * \delta_{a}^{t}}\right|_{E_{m, \delta}}\right\|_{\infty}<\varepsilon . \tag{2.10}
\end{align*}
$$

For $k=1,2, \ldots$, taking $\varepsilon=1 / k$ in the above arguments and denoting m by n_{k}, $E_{m, \delta}$ by E_{k}, we get a sequence $\left\{n_{k}\right\}$ of positive integers and a sequence $\left\{E_{k}\right\}$ of subsets in K such that $\lambda(K)=\lim _{k \rightarrow \infty} \lambda\left(E_{k}\right)$ and (2.1) and (2.2) hold.

By Theorem 2.7 in [6], condition (ii) of Theorem 2.1 also implies that the operators T_{1}, \ldots, T_{N} satisfy the d-hypercyclicity criterion. Indeed, for each $r \in \mathbb{N}$, if one considers nonempty open sets

$$
V_{0, j}, V_{1, j}, \ldots, V_{N, j}, \quad j=1, \ldots, r
$$

in $L^{p}(G)$ and picks $f_{0, j}, g_{1, j}, \ldots, g_{N, j} \in C_{c}(G)$ with conditions $f_{0, j} \in V_{0, j}$, $g_{1, j} \in V_{1, j}, \ldots, g_{N, j} \in V_{N, j}$, then the same arguments as in the proof of (ii) \Rightarrow (i) in Theorem 2.1 can be applied to these functions to obtain r sequences $\left(v_{1, k}\right), \ldots,\left(v_{r, k}\right)$ in $L^{p}(G)$ satisfying

$$
\lim _{k \rightarrow \infty} v_{j, k}=f_{0, j} \text { and } \lim _{k \rightarrow \infty} T_{a, w_{l}}^{r n_{l} n_{k}} v_{j, k}=g_{l, j} \quad \text { for } 1 \leqslant l \leqslant N, 1 \leqslant j \leqslant r,
$$

yielding

$$
V_{0, j} \cap T_{a, w_{1}}^{-r_{1} n_{k}}\left(V_{1, j}\right) \cap \ldots \cap T_{a, w_{N}}^{-r_{N} n_{k}}\left(V_{N, j}\right) \neq \emptyset \quad \text { for some } k .
$$

Hence we can draw the following result.

Corollary 2.2. Let G be a locally compact group, and let a be an aperiodic element in G. Let $1 \leqslant p<\infty$ and $1 \leqslant r_{1}<r_{2}<\ldots<r_{N}$, where $N \geqslant 2, r_{i} \in \mathbb{N}$, $i=1, \ldots, N$. For each $1 \leqslant l \leqslant N$, let $w_{l}: G \rightarrow(0, \infty)$ be a weight on G and $T_{a, w_{l}}$ a weighted translation on $L^{p}(G)$. The following conditions are equivalent:
(i) $T_{a, w_{1}}^{r_{1}}, \ldots, T_{a, w_{N}}^{r_{N}}$ are densely d-hypercyclic.
(ii) $T_{a, w_{1}}^{r_{1}}, \ldots, T_{a, w_{N}}^{r_{N}}$ satisfy the d-hypercyclicity criterion.

Using arguments similar to those in the proof of Theorem 2.1, we can also characterize d-topological mixing powers of weighted translations for nondiscrete groups.

Corollary 2.3. Let G be a locally compact group, and let a be an aperiodic element in G. Let $1 \leqslant p<\infty$ and $1 \leqslant r_{1}<r_{2}<\ldots<r_{N}$, where $N \geqslant 2, r_{i} \in \mathbb{N}$, $i=1, \ldots, N$. For each $1 \leqslant l \leqslant N$, let $w_{l}: G \rightarrow(0, \infty)$ be a weight on G and $T_{a, w_{l}}$ a weighted translation on $L^{p}(G)$. The following conditions are equivalent:
(i) $T_{a, w_{1}}^{r_{1}}, \ldots, T_{a, w_{N}}^{r_{N}}$ are d-mixing.
(ii) For $1 \leqslant l \leqslant N$ and each compact subset $K \subseteq G$ with $\lambda(K)>0$, there is a sequence of Borel sets $\left(E_{k}\right)$ in K such that $\lambda(K)=\lim _{k \rightarrow \infty} \lambda\left(E_{k}\right)$ and the sequences

$$
\varphi_{l, k}:=\prod_{s=1}^{r_{l} k} w_{l} * \delta_{a^{-1}}^{s} \quad \text { and } \quad \widetilde{\varphi}_{l, k}:=\left(\prod_{s=0}^{r_{l} k-1} w_{l} * \delta_{a}^{s}\right)^{-1}
$$

satisfy

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left\|\left.\varphi_{l, k}\right|_{E_{k}}\right\|_{\infty}=\lim _{k \rightarrow \infty}\left\|\left.\widetilde{\varphi}_{l, k}\right|_{E_{k}}\right\|_{\infty}=0 \tag{2.11}
\end{equation*}
$$

and, if $1 \leqslant s<l<N$,

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left\|\left.\frac{\prod_{t=1}^{r_{s} k} w_{s} * \delta_{a-1}^{t-r_{l} k}}{\prod_{t=0}^{r_{l} k-1} w_{l} * \delta_{a}^{t}}\right|_{E_{k}}\right\|_{\infty}=\lim _{k \rightarrow \infty}\left\|\left.\frac{\prod_{t=1}^{r_{l} k} w_{l} * \delta_{a-1}^{t-r_{s} k}}{\prod_{t=0}^{r_{s} k-1} w_{s} * \delta_{a}^{t}}\right|_{E_{k}}\right\|_{\infty}=0 . \tag{2.12}
\end{equation*}
$$

If G is discrete, then $E_{m}=K$ in the proof of Theorem 2.1. Hence we have the following characterization of disjoint hypercyclic powers of weighted translation operators on discrete groups.

Corollary 2.4. Let G be a discrete group, and let a be a torsion free element in G. Let $1 \leqslant p<\infty$ and $1 \leqslant r_{1}<r_{2}<\ldots<r_{N}$, where $N \geqslant 2, r_{i} \in \mathbb{N}, i=1, \ldots, N$. For each $1 \leqslant l \leqslant N$, let $w_{l}: G \rightarrow(0, \infty)$ be a weight on G and $T_{a, w_{l}}$ a weighted translation on $l^{p}(G)$. The following conditions are equivalent:
(i) $T_{a, w_{1}}^{r_{1}}, \ldots, T_{a, w_{N}}^{r_{N}}$ are densely d-hypercyclic.
(ii) For $1 \leqslant l \leqslant N$ and each finite subset $K \subseteq G$ for the sequences

$$
\varphi_{l, n}:=\prod_{s=1}^{r_{l} n} w_{l} * \delta_{a^{-1}}^{s} \quad \text { and } \quad \widetilde{\varphi}_{l, n}:=\left(\prod_{s=0}^{r_{l} n-1} w_{l} * \delta_{a}^{s}\right)^{-1}
$$

there exists an increasing subsequence $\left(n_{k}\right) \subseteq \mathbb{N}$ satisfying

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left\|\left.\varphi_{l, n_{k}}\right|_{K}\right\|_{\infty}=\lim _{k \rightarrow \infty}\left\|\left.\widetilde{\varphi}_{l, n_{k}}\right|_{K}\right\|_{\infty}=0 \tag{2.13}
\end{equation*}
$$

and, if $1 \leqslant s<l<N$,

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left\|\left.\frac{\prod_{t=1}^{r_{s} n_{k}} w_{s} * \delta_{a^{-1}}^{t-r_{l} n_{k}}}{\prod_{t=0}^{r_{l} n_{k}-1} w_{l} * \delta_{a}^{t}}\right|_{K}\right\|_{\infty}=\lim _{k \rightarrow \infty}\left\|\left.\frac{\prod_{t=1}^{r_{1} n_{k}} w_{l} * \delta_{a^{-1}}^{t-r_{s} n_{k}}}{\prod_{t=0}^{r_{s} n_{k}-1} w_{s} * \delta_{a}^{t}}\right|_{K}\right\|_{\infty}=0 . \tag{2.14}
\end{equation*}
$$

Example. Let $G=\mathbb{Z}, a=-1$. For each $1 \leqslant l \leqslant N$, we consider the weighted translation T_{l} on $l^{2}(\mathbb{Z})$ defined by $T_{l}=T_{-1, w_{l} * \delta_{-1}}$, where $\left(w_{l}\right)$ is a sequence of positive weights. Then T_{l} is a bilateral weighted shift on $l^{2}(\mathbb{Z})$, that is, $T_{l} e_{j}=$ $w_{l, j} e_{j-1}$ with $w_{l, j}=w_{l}(j)$ for each l. Here $\left(e_{j}\right)_{j \in \mathbb{Z}}$ is the canonical basis of $l^{2}(\mathbb{Z})$. Let $1 \leqslant r_{1}<r_{2}<\ldots<r_{N}$, where $r_{i} \in \mathbb{N}, i=1, \ldots, N$. Next, by Corollary 2.4,
the operators $T_{1}^{r_{1}}, \ldots, T_{N}^{r_{N}}$ are densely d-hypercyclic if and only if given $\varepsilon>0$ and $q \in \mathbb{N}$, there exists $m \in \mathbb{N}$ such that for $|j| \leqslant q$ we have

$$
\left\{\begin{array}{l}
\left|\prod_{i=j+1}^{j+r_{l} m} w_{l}(i)\right|>\frac{1}{\varepsilon} \tag{2.15}\\
\left|\prod_{i=j-r_{l} m+1}^{j} w_{l}(i)\right|<\varepsilon
\end{array} \quad 1 \leqslant l \leqslant N,\right.
$$

and

$$
\left\{\begin{array}{l}
\left|\prod_{i=j+1}^{j+r_{l} m} w_{l}(i)\right|>\frac{1}{\varepsilon}\left|\prod_{i=j+\left(r_{l}-r_{s}\right) m+1}^{j+r_{l} m} w_{s}(i)\right|, \tag{2.16}\\
\left|\prod_{i=j-\left(r_{l}-r_{s}\right) m+1}^{j+r_{s} m} w_{l}(i)\right|<\varepsilon\left|\prod_{i=j+1}^{j+r_{s} m} w_{s}(i)\right|,
\end{array}\right.
$$

which are the same as in [6], Theorem 4.7.

3. Disjoint supercyclic powers of weighted translations

It is well known that a complex Banach space admits a supercyclic operator if it is one dimensional or infinite-dimensional and separable. Chen in [7] characterized supercyclic weighted translation operators on the Lebesgue space $L^{p}(G)$ in terms of the weight. Inspired by his work, in this section we will give sufficient and necessary conditions for disjoint supercyclic powers of weighted translations generated by aperiodic elements on groups.

Theorem 3.1. Let G be a locally compact group, and let a be an aperiodic element in G. Let $1 \leqslant p<\infty$ and $1 \leqslant r_{1}<r_{2}<\ldots<r_{N}$, where $N \geqslant 2, r_{i} \in \mathbb{N}$, $i=1, \ldots, N$. For each $1 \leqslant l \leqslant N$, let $w_{l}: G \rightarrow(0, \infty)$ be a weight on G and $T_{a, w_{l}}$ a weighted translation on $L^{p}(G)$. The following conditions are equivalent:
(i) $T_{a, w_{1}}^{r_{1}}, \ldots, T_{a, w_{N}}^{r_{N}}$ are densely d-supercyclic.
(ii) For $1 \leqslant l \leqslant N$ and each compact subset $K \subseteq G$ with $\lambda(K)>0$, there is a sequence of Borel sets $\left(E_{k}\right)$ in K and there exist sequences $\left(\alpha_{l, n}\right)_{n} \subseteq \mathbb{C} \backslash\{0\}$ such that $\lambda(K)=\lim _{k \rightarrow \infty} \lambda\left(E_{k}\right)$ and for the sequences

$$
\varphi_{l, n}:=\left|\alpha_{l, n}\right| \prod_{s=1}^{r_{l} n} w_{l} * \delta_{a^{-1}}^{s} \quad \text { and } \quad \widetilde{\varphi}_{l, n}:=\left(\left|\alpha_{l, n}\right| \prod_{s=0}^{r_{l} n-1} w_{l} * \delta_{a}^{s}\right)^{-1}
$$

there exists an increasing subsequence $\left(n_{k}\right) \subseteq \mathbb{N}$ satisfying

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left\|\left.\varphi_{l, n_{k}}\right|_{E_{k}}\right\|_{\infty}=\lim _{k \rightarrow \infty}\left\|\left.\widetilde{\varphi}_{l, n_{k}}\right|_{E_{k}}\right\|_{\infty}=0 \tag{3.1}
\end{equation*}
$$

and, if $1 \leqslant s<l<N$,

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left\|\left.\frac{\prod_{t=1}^{r_{s} n_{k}} w_{s} * \delta_{a-1}^{t-r_{l} n_{k}}}{\prod_{t=0}^{r_{l} n_{k}-1} w_{l} * \delta_{a}^{t}}\right|_{E_{k}}\right\|_{\infty}=\lim _{k \rightarrow \infty}\left\|\left.\frac{\prod_{t=1}^{r_{l} n_{k}} w_{l} * \delta_{a-1}^{t-r_{s} n_{k}}}{\prod_{t=0}^{r_{s} n_{k}-1} w_{s} * \delta_{a}^{t}}\right|_{E_{k}}\right\|_{\infty}=0 \tag{3.2}
\end{equation*}
$$

Proof. (i) \Rightarrow (ii). Let $T_{a, w_{1}}^{r_{1}}, \ldots, T_{a, w_{N}}^{r_{N}}$ be densely d-supercyclic. Let $K \subseteq G$ be a compact set with $\lambda(K)>0$. Let $\varepsilon>0$. Due to aperiodicity of a, there exists $M \in \mathbb{N}$ such that $K \cap K a^{ \pm n}=\emptyset$ for all $n>M$. Let $\chi_{K} \in L^{p}(G)$ be the characteristic function of K. Choose $0<\delta<\varepsilon /(1+\varepsilon)$. By assumption, there exists a d-supercyclic vector $f \in L^{p}(G)$ and some $m>M$ and $\alpha \in \mathbb{C} \backslash\{0\}$ such that for $1 \leqslant l \leqslant N$,

$$
\begin{equation*}
\left\|f-\chi_{K}\right\|_{p}<\delta^{2} \quad \text { and } \quad\left\|\alpha T_{a, w_{l}}^{r_{l} m} f-\chi_{K}\right\|_{p}<\delta^{2} \tag{3.3}
\end{equation*}
$$

The rest is similar to the proof of (i) \Rightarrow (ii) in Theorem 2.1, so we omit the details.
(ii) \Rightarrow (i). A simple Baire category argument and Birkhoff transitivity theorem show that $T_{a, w_{1}}^{r_{1}}, \ldots, T_{a, w_{N}}^{r_{N}}$ are densely d-supercyclic provided for every nonempty open subsets V_{0}, \ldots, V_{N} of $L^{p}(G)$, there exist $m \in \mathbb{N}$ and $\lambda_{m} \in \mathbb{C} \backslash\{0\}$ such that $\emptyset \neq V_{0} \cap \lambda_{m}^{-1} T_{a, w_{1}}^{-r_{1} m}\left(V_{1}\right) \cap \ldots \cap \lambda_{m}^{-1} T_{a, w_{N}}^{-r_{N} m}\left(V_{N}\right)$.

Let V_{0}, \ldots, V_{N} be nonempty open subsets of $L^{p}(G)$. Since the space $C_{c}(G)$ of continuous functions on G with compact support is dense in $L^{p}(G)$, we can pick $f, g_{1}, \ldots, g_{N} \in C_{c}(G)$ with $f \in V_{0}, g_{1} \in V_{1}, \ldots, g_{N} \in V_{N}$. Let K be the union of the compact supports of f, g_{1}, \ldots, g_{N} and let $\chi_{K} \in L^{p}(G)$ be the characteristic function of K. For $1 \leqslant l \leqslant N$, let $E_{k} \subseteq K$ and let there exist an increasing subsequence $\left(n_{k}\right) \subseteq \mathbb{N}$ satisfying conditions (3.1) and (3.2).

By aperiodicity of a, there exists $M \in \mathbb{N}$ such that $K \cap K a^{ \pm n}=\emptyset$ for all $n>M$. Similarly to the proof of Theorem (2.1), for $1 \leqslant l \leqslant N$ we define self-maps $S_{a, w_{l}}$ on the subspace $L_{c}^{p}(G)$ of functions in $L^{p}(G)$ with compact support by

$$
S_{a, w_{l}}(h)=\frac{h}{w_{l}} * \delta_{a^{-1}}, \quad h \in L_{c}^{p}(G)
$$

such that

$$
T_{a, w_{l}}^{r_{l} n_{k}} S_{a, w_{l}}^{r_{l} n_{k}}(h)=h, \quad h \in L_{c}^{p}(G)
$$

A similar calculation to that used in Theorem 2.1 will show

$$
\begin{aligned}
& \lim _{k \rightarrow \infty}\left\|\alpha_{l, n_{k}} T_{a, w_{l}}^{r_{l} n_{k}}\left(f \chi_{E_{k}}\right)\right\|_{p}=0 \\
& \lim _{k \rightarrow \infty}\left\|\frac{1}{\alpha_{l, n_{k}}} S_{a, w_{l}}^{r r_{k} n_{k}}\left(g_{l} \chi_{E_{k}}\right)\right\|_{p}=0 \\
& \lim _{k \rightarrow \infty} \| T_{a, w_{l}}^{r_{k} n_{k}} S_{a, w_{s}^{s} s_{k}}^{\left.r_{s} \chi_{E_{k}}\right) \|_{p}=0} \\
& \lim _{k \rightarrow \infty}\left\|T_{a, w_{s}}^{r_{s} n_{k}} S_{a, w_{l}}^{r_{l} n_{k}}\left(g_{l} \chi_{E_{k}}\right)\right\|_{p}=0
\end{aligned}
$$

Hence, we have

$$
\lim _{k \rightarrow \infty}\left\|T_{a, w_{l}}^{r_{l} n_{k}}\left(f \chi_{E_{k}}\right)\right\|_{p}\left\|S_{a, w_{l}}^{r_{l} n_{k}}\left(g_{l} \chi_{E_{k}}\right)\right\|_{p}=0
$$

and

$$
\lim _{k \rightarrow \infty}\left\|\sum_{i=1}^{N} T_{a, w_{l}}^{r_{1} n_{k}} S_{a, w_{i}}^{r_{i n} n_{k}}\left(g_{i} \chi_{E_{k}}\right)-g_{l} \chi_{E_{k}}\right\|_{p}=0
$$

By passing to a subsequence if necessary, we may assume that for $1 \leqslant l \leqslant N$,

$$
\begin{equation*}
\left\|T_{a, w_{l}}^{r_{l} l_{k}}\left(f \chi_{E_{k}}\right)\right\|_{p}\left\|S_{a, w_{l}}^{r_{l} n_{k}}\left(g_{l} \chi_{E_{k}}\right)\right\|_{p}<\frac{1}{4 k^{2}} \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|\sum_{i=1}^{N} T_{a, w_{l}}^{r_{l} n_{k}} S_{a, w_{i}}^{r_{i} n_{k}}\left(g_{i} \chi_{E_{k}}\right)-g_{l} \chi_{E_{k}}\right\|_{p}<\frac{1}{2 k} . \tag{3.5}
\end{equation*}
$$

Now, let

$$
v_{k}=f \chi_{E_{k}}+\frac{1}{\alpha_{n_{k}}} \sum_{i=1}^{N} S_{a, w_{i}}^{r_{i} n_{k}}\left(g_{i} \chi_{E_{k}}\right) \in L^{p}(G),
$$

where $\alpha_{n_{k}}:=2 k\left\|\sum_{i=1}^{N} S_{a, w_{i}}^{r_{i} n_{k}}\left(g_{i} \chi_{E_{k}}\right)\right\|_{p}$. Then for $1 \leqslant l \leqslant N$,

$$
\left\|v_{k}-f\right\|_{p} \leqslant\|f\|_{\infty} \lambda\left(K \backslash E_{k}\right)^{1 / p}+\frac{1}{2 k},
$$

and

$$
\begin{aligned}
\left\|\alpha_{n_{k}} T_{a, w_{l}}^{r_{l} n_{k}} v_{k}-g_{l}\right\|_{p} \leqslant & \left\|\alpha_{n_{k}} T_{a, w_{l}}^{r_{l} n_{k}}\left(f \chi_{E_{k}}\right)\right\|_{p} \\
& +\left\|\sum_{i=1}^{N} T_{a, w_{l}}^{r_{l} n_{k}} S_{a, w_{i}}^{r_{i} n_{k}}\left(g_{i} \chi_{E_{k}}\right)-g_{l}\right\|_{p} \\
\leqslant & \left\|\alpha_{n_{k}} T_{a, w_{l}}^{r_{l} n_{k}}\left(f \chi_{E_{k}}\right)\right\|_{p}+\left\|g_{l}\right\|_{\infty} \lambda\left(K \backslash E_{k}\right)^{1 / p} \\
& +\left\|\sum_{i=1}^{N} T_{a, w_{l}}^{r_{l} n_{k}} S_{a, w_{i}}^{r_{i} n_{k}}\left(g_{i} \chi_{E_{k}}\right)-g_{l} \chi_{E_{k}}\right\|_{p} \\
\leqslant & \frac{1}{2 k}+\left\|g_{l}\right\|_{\infty} \lambda\left(K \backslash E_{k}\right)^{1 / p}+\frac{1}{2 k}
\end{aligned}
$$

Hence, $\lim _{k \rightarrow \infty} v_{k}=f$ and $\lim _{k \rightarrow \infty} \alpha_{n_{k}} T_{a, w_{l}}^{r_{l} n_{k}} v_{k}=g_{l}$, which imply

$$
V_{0} \cap \alpha_{n_{k}}^{-1} T_{a, w_{1}}^{-r_{1} n_{k}}\left(V_{1}\right) \cap \ldots \cap \alpha_{n_{k}}^{-1} T_{a, w_{N}}^{-r_{N} n_{k}}\left(V_{N}\right) \neq \emptyset \quad \text { for some } k .
$$

Therefore, $T_{a, w_{1}}^{r_{1}}, \ldots, T_{a, w_{N}}^{r_{N}}$ are densely d-supercyclic.

Remark 3.2. By Corollary 2.5 in [7], it is easily shown that the condition (ii) in Theorem 3.1 holds if and only if for $1 \leqslant l \leqslant N$ and each compact subset $K \subseteq G$ with $\lambda(K)>0$, there is a sequence of Borel sets $\left(E_{k}\right)$ in K such that $\lambda(K)=\lim _{k \rightarrow \infty} \lambda\left(E_{k}\right)$ and for the sequences

$$
\varphi_{l, n}:=\prod_{s=1}^{r_{l} n} w_{l} * \delta_{a^{-1}}^{s} \quad \text { and } \quad \widetilde{\varphi}_{l, n}:=\left(\prod_{s=0}^{r_{l} n-1} w_{l} * \delta_{a}^{s}\right)^{-1}
$$

there exists an increasing subsequence $\left(n_{k}\right) \subseteq \mathbb{N}$ satisfying

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left\|\left.\varphi_{l, n_{k}} \widetilde{\varphi}_{l, n_{k}}\right|_{E_{k}}\right\|_{\infty}=0 \tag{3.6}
\end{equation*}
$$

and (3.2) holds.
If G is discrete, by the proof of Theorem 3.1 we have the following characterization of disjoint supercyclic powers of weighted translation operators on discrete groups.

Corollary 3.3. Let G be a discrete group, and let a be a torsion free element in G. Let $1 \leqslant p<\infty$ and $1 \leqslant r_{1}<r_{2}<\ldots<r_{N}$, where $N \geqslant 2, r_{i} \in \mathbb{N}, i=1, \ldots, N$. For each $1 \leqslant l \leqslant N$, let $w_{l}: G \rightarrow(0, \infty)$ be a weight on G and $T_{a, w_{l}}$ a weighted translation on $l^{p}(G)$. The following conditions are equivalent:
(i) $T_{a, w_{1}}^{r_{1}}, \ldots, T_{a, w_{N}}^{r_{N}}$ are densely d-supercyclic.
(ii) For $1 \leqslant l \leqslant N$ and each finite subset $K \subseteq G$ for the sequences

$$
\varphi_{l, n}:=\prod_{s=1}^{r_{l} n} w_{l} * \delta_{a^{-1}}^{s} \quad \text { and } \quad \widetilde{\varphi}_{l, n}:=\left(\prod_{s=0}^{r_{l} n-1} w_{l} * \delta_{a}^{s}\right)^{-1}
$$

there exists an increasing subsequence $\left(n_{k}\right) \subseteq \mathbb{N}$ satisfying

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left\|\left.\varphi_{l, n_{k}} \widetilde{\varphi}_{l, n_{k}}\right|_{K}\right\|_{\infty}=0 \tag{3.7}
\end{equation*}
$$

and, if $1 \leqslant s<l<N$,

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left\|\left.\frac{\prod_{t=1}^{r_{s} n_{k}} w_{s} * \delta_{a^{-1}}^{t-r_{l} n_{k}}}{\prod_{t=0}^{r_{l} n_{k}-1} w_{l} * \delta_{a}^{t}}\right|_{K}\right\|_{\infty}=\lim _{k \rightarrow \infty}\left\|\left.\frac{\prod_{t=1}^{r_{l} n_{k}} w_{l} * \delta_{a^{-1}}^{t-r_{s} n_{k}}}{\prod_{t=0}^{r_{s} n_{k}-1} w_{s} * \delta_{a}^{t}}\right|_{K}\right\|_{\infty}=0 \tag{3.8}
\end{equation*}
$$

Example. Let $G=\mathbb{Z}, a=-1$. For each $1 \leqslant l \leqslant N$ we consider weighted translation T_{l} on $l^{2}(\mathbb{Z})$, defined by $T_{l}=T_{-1, w_{l} * \delta_{-1}}$, where $\left(w_{l}\right)$ is a positive weight. Then T_{l} is a bilateral weighted shift on $l^{2}(\mathbb{Z})$, that is, $T_{l} e_{j}=w_{l, j} e_{j-1}$ with $w_{l, j}=w_{l}(j)$ for each l. Here $\left(e_{j}\right)_{j \in \mathbb{Z}}$ is the canonical basis of $l^{2}(\mathbb{Z})$. Let $1 \leqslant r_{1}<r_{2}<\ldots<r_{N}$,
where $r_{i} \in \mathbb{N}, i=1, \ldots, N$. Next, by Corollary 3.3 , the operators $T_{1}^{r_{1}}, \ldots, T_{N}^{r_{N}}$ are densely d-supercyclic if and only if given $\varepsilon>0$ and $q \in \mathbb{N}$, there exists $m \in \mathbb{N}$ so that for $|j| \leqslant q,|k| \leqslant q$ and $1 \leqslant s, l \leqslant N$ we have

$$
\begin{equation*}
\left|\prod_{i=j-r_{l} m+1}^{j} w_{l}(i)\right|<\varepsilon\left|\prod_{i=k+1}^{k+r_{s} m} w_{s}(i)\right|, \quad 1 \leqslant l, s \leqslant N \tag{3.9}
\end{equation*}
$$

and

$$
\left\{\begin{array}{l}
\left|\prod_{i=j+1}^{j+r_{l} m} w_{l}(i)\right|>\frac{1}{\varepsilon}\left|\prod_{i=j+\left(r_{l}-r_{s}\right) m+1}^{j+r_{l} m} w_{s}(i)\right|, \tag{3.10}\\
\left|\prod_{i=j-\left(r_{l}-r_{s}\right) m+1}^{j+r_{s} m} w_{l}(i)\right|<\varepsilon\left|\prod_{i=j+1}^{j+r_{s} m} w_{s}(i)\right|
\end{array}\right.
$$

which are the same as in [15], Theorem 4.2.1.

References

[1] F. Bayart, E. Matheron: Dynamics of Linear Operators. Cambridge Tracts in Mathematics 179, Cambridge University Press, Cambridge, 2009.
[2] L. Bernal-González: Disjoint hypercyclic operators. Stud. Math. 182 (2007), 113-131.
zbl MR doi
[3] J. Bès, Ö. Martin, A. Peris: Disjoint hypercyclic linear fractional composition operators. J. Math. Anal. Appl. 381 (2011), 843-856.
[4] J. Bès, Ö. Martin, A. Peris, S. Shkarin: Disjoint mixing operators. J. Funct. Anal. 263 (2012), 1283-1322.
zbl MR doi
[5] J. Bès, Ö. Martin, R. Sanders: Weighted shifts and disjoint hypercyclicity. J. Oper. Theory 72 (2014), 15-40.
zbl MR doi
[6] J. Bès, A.Peris: Disjointness in hypercyclicity. J. Math. Anal. Appl. 336 (2007), 297-315.
[7] C. C. Chen: Supercyclic and Cesàro hypercyclic weighted translations on groups. Taiwanese J. Math. 16 (2012), 1815-1827.
[8] C.C.Chen, C.H. Chu: Hypercyclicity of weighted convolution operators on homogeneous spaces. Proc. Am. Math. Soc. 137 (2009), 2709-2718.
[9] C. C. Chen, C. H. Chu: Hypercyclic weighted translations on groups. Proc. Am. Math. Soc. 139 (2011), 2839-2846. don, 2011.
[11] S. Grosser, M. Moskowitz: On central topological groups. Trans. Am. Math. Soc. 127 (1967), 317-340.
zbl MR doi
[12] S.-A. Han, Y.-X. Liang: Disjoint hypercyclic weighted translations generated by aperiodic elements. Collect. Math. 67 (2016), 347-356.
[13] E. Hewitt, K. A. Ross: Abstract Harmonic Analysis. Vol. I: Structure of Topological Groups, Integration Theory, Group Representations. Grundlehren der Mathematischen Wissenschaften 115, A Series of Comprehensive Studies in Mathematics, Springer, Berlin, 1979.
[14] Y. X. Liang, L. Xia: Disjoint supercyclic weighted translations generated by aperiodic elements. Collect. Math. 68 (2017), 265-278.
[15] Ö. Martin: Disjoint Hypercyclic and Supercyclic Composition Operators. PhD Thesis, Bowling Green State University, Bowling Green, 2010.
zbl MR
[16] H. N. Salas: Dual disjoint hypercyclic operators. J. Math. Anal. Appl. 374 (2011), 106-117.
zbl MR doi
[17] S. Shkarin: A short proof of existence of disjoint hypercyclic operators. J. Math. Anal. Appl. 367 (2010), 713-715.
zbl MR doi
[18] L. Zhang, Z.-H. Zhou: Notes about the structure of common supercyclic vectors. J. Math. Anal. Appl. 418 (2014), 336-343.
zbl MR doi

Authors' addresses: Liang Zhang, Hui-Qiang Lu, Xiao-Mei Fu, School of Marine Science and Technology, Tianjin University, 92 Weijin Road, 300072 Tianjin, Nankai, P.R. China, e-mail: 168zhangliang2011@163.com, liangzhang@tju.edu.cn, chentu90@163.com, fuxiaomei@tju.edu.cn; Ze-Hua Zhou (corresponding author), Department of Mathematics, Tianjin University, 92 Weijin Road, 300072 Tianjin, Nankai, P. R. China, e-mail: zehuazhoumath@aliyun.com, zhzhou@tju.edu.cn.

[^0]: The work was supported in part by the National Natural Science Foundation of China

