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Abstract. A general theorem (principle of a priori boundedness) on solvability of the
boundary value problem

dx = dA(t) · f(t, x), h(x) = 0

is established, where f : [a, b]×R
n
→ R

n is a vector-function belonging to the Carathéodory
class corresponding to the matrix-function A : [a, b]→ R

n×n with bounded total variation
components, and h : BVs([a, b],R

n) → R
n is a continuous operator. Basing on the men-

tioned principle of a priori boundedness, effective criteria are obtained for the solvability of
the system under the condition x(t1(x)) = B(x) ·x(t2(x))+ c0, where ti : BVs([a, b],R

n)→
[a, b] (i = 1, 2) and B : BVs([a, b],R

n)→ R
n are continuous operators, and c0 ∈ R

n.

Keywords: system of nonlinear generalized ordinary differential equations; Kurzweil-
Stieltjes integral; general boundary value problem; solvability; principle of a priori bound-
edness

MSC 2010 : 34K10

1. Statement of the problem and formulation of the results

Let n be a natural number, [a, b] a closed interval of real axis, A = (aik)
n
i,k=1 :

[a, b] → R
n×n a matrix-function with bounded total variation components, f

a vector-function belonging to the Carathéodory class Car([a, b] × R
n,Rn;A) cor-

responding to the matrix-function A, and h : BVs([a, b],R
n) → R

n a continuous
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operator satisfying the condition

sup{‖h(x)‖ : x ∈ BVs([a, b],R
n), ‖x‖s 6 ̺} < ∞

for every ̺ ∈ ]0,∞[.

Consider the nonlinear system of generalized ordinary differential equations

(1.1) dx = dA(t) · f(t, x)

with the boundary condition

(1.2) h(x) = 0.

The theorem on the existence of a solution of the problem (1.1), (1.2) which will

be given below and will be called the principle of a priori boundedness, generalizes

well known Conti-Opial type theorems (see [11], [14], [21] for the case of ordinary

differential equations) and supplements earlier known criteria for the solvability of

nonlinear boundary value and initial problems for systems of generalized ordinary

differential equations (see, e.g., [1], [3], [4], [6], [8]–[10], [12], [20], [22]–[24] and the

references therein).

On the basis on the above mentioned principle of a priori boundedness, we have

obtained effective criteria for the solvability of system (1.1) under the condition

(1.3) x(t1(x)) = B(x) · x(t2(x)) + c0,

where ti : BVs([a, b],R
n) → [a, b] (i = 1, 2) and B : BVs([a, b],R

n) → R
n are contin-

uous operators, and c0 ∈ R
n.

Analogous and related questions are investigated in [14]–[19] (see also the refer-

ences therein) for the boundary value problems for linear and nonlinear systems of

ordinary differential and functional differential equations.

To a considerable extent, the interest in the theory of generalized ordinary differ-

ential equations has also been stimulated by the fact that this theory enables one

to investigate ordinary differential, impulsive and difference equations from a unified

point of view (see, e.g., [1]–[10], [12], [13], [20], [22], [24] and the references therein).

Throughout the paper the following notation and definitions will be used.

R = ]−∞,∞[, R+ = [0,∞[, [a, b] (a, b ∈ R) is a closed interval.

R
n×m is the space of all real n×m-matrices X = (xil)

n,m
i,l=1 with the norm

‖X‖ =

n,m∑

i,l=1

|xil|;

R
n×m
+ = {(xil)

n,m
i,l=1 : xil > 0 (i = 1, . . . , n; l = 1, . . . ,m)}.
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On×m (or O) is the zero n×m-matrix.

If X = (xil)
n,m
i,l=1 ∈ R

n×m, then

|X | = (|xil|)
n,m
i,l=1 and sgnX = (sgnxil)

n,m
i,l=1.

R
n = R

n×1 is the space of all real column n-vectors x = (xi)
n
i=1; R

n
+ = R

n×1
+ .

〈x, y〉 is the scalar product of the vectors x and y ∈ R
n.

If X ∈ R
n×n, then detX is the determinant of X ; In is the identity n×n-matrix;

diag(λ1, . . . , λn) is the diagonal matrix with diagonal elements λ1, . . . , λn.

varba(X) is the total variation of the matrix-function X : [a, b] → R
n×m, i.e., the

sum of total variations of its components xil (i = 1, . . . , n; l = 1, . . . ,m); V (X)(t) =

(v(xil)(t))
n,m
i,l=1, where v(xil)(a) = 0, v(xil)(t) = varta(xil) for a < t 6 b;

X(t−) and X(t+) are the left and the right limits of the matrix-function X :

[a, b] → R
n×m at the point t (we will assume X(t) = X(a) for t 6 a and X(t) = X(b)

for t > b, if necessary);

∆−X(t) = X(t)−X(t−), ∆+X(t) = X(t+)−X(t);

‖X‖s = sup{‖X(t)‖ : t ∈ [a, b]}, ‖X‖v = ‖X(a)‖+ varba(X).

BV([a, b],Rn×m) is the set of all matrix-functions of bounded variationX : [a, b] →

R
n×m (i.e., such that varba(X) < ∞);

BVs([a, b],R
n×m) is the normed space of all X ∈ BV ([a, b],Rn×m) with the

norm ‖X‖s;

BVv([a, b],R
n×m) is the Banach space of all X ∈ BV ([a, b],Rn×m) with the

norm ‖X‖v.

A matrix-function is said to be continuous, nondecreasing, integrable, etc., if each

of its components is such.

If I ⊂ R is an interval, then C(I,Rn×m) is the set of all continuous matrix-

functions X : I → R
n×m.

If B1 and B2 are normed spaces, then an operator g : B1 → B2 (nonlinear, in

general) is positive homogeneous if

g(λx) = λg(x)

for every λ ∈ R+ and x ∈ B1.

An operator ϕ : BV([a, b],Rn) → R
n is called nondecreasing if for every x, y ∈

BV([a, b],Rn) such that x(t) 6 y(t) for t ∈ [a, b] the inequality ϕ(x)(t) 6 ϕ(y)(t)

holds for t ∈ [a, b].

If α : [a, b] → R, is a nondecreasing function, then Dα = {t ∈ [a, b] : ∆−α(t) +

∆+α(t) 6= 0}.
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s1, s2, sc : BV([a, b],R) → BV([a, b],R) are the operators defined, respectively, by

s1(x)(a) = s2(x)(a) = 0,

s1(x)(t) =
∑

a<τ6t

∆−x(τ) and s2(x)(t) =
∑

a6τ<t

∆+x(τ) for a < t 6 b,

and

sc(x)(t) = x(t) − s1(x)(t) − s2(x)(t) for t ∈ [a, b].

If g : [a, b] → R is a nondecreasing function, x : [a, b] → R and a 6 s < t 6 b, then

∫ t

s

x(τ) dg(τ) =

∫

]s,t[

x(τ) dsc(g)(τ) +
∑

s<τ6t

x(τ)∆−g(τ) +
∑

s6τ<t

x(τ)∆+g(τ),

where
∫
]s,t[

x(τ) dsc(g)(τ) is the Lebesgue-Stieltjes integral over the open interval

]s, t[ with respect to the measure µ(sc(g)) corresponding to the function sc(g); if

a = b, then we assume
∫ b

a
x(t) dg(t) = 0 so that

∫ t

s
x(τ) dg(τ) is the Kurzweil-Stieltjes

integral (see [20], [22], [24]);

L([a, b],R; g) is the space of all functions x : [a, b] → R, measurable and integrable

with respect to the measure µ(gc(g)) for which

∑

a<τ6b

|x(t)|∆−g(τ) +
∑

a6τ<b

|x(t)|∆+g(t) < ∞,

with the norm

‖x‖L,g =

∫ b

a

|x(t)| dg(t).

If gj : [a, b] → R (j = 1, 2) are nondecreasing functions, g(t) ≡ g1(t) − g2(t), and

x : [a, b] → R, then

∫ t

s

x(τ) dg(τ) =

∫ t

s

x(τ) dg1(τ) −

∫ t

s

x(τ) dg2(τ) for a 6 s 6 t 6 b.

If G = (gik)
l,n
i,k=1 : [a, b] → R

l×n is a nondecreasing matrix-function and D ⊂

R
n×m, then L([a, b], D;G) is the set of all matrix-functions X = (xkj)

n,m
k,j=1 : [a, b] →

D such that xkj ∈ L([a, b],R; gik) (i = 1, . . . , l; k = 1, . . . , n; j = 1, . . . ,m);

∫ t

s

dG(τ) ·X(τ) =

( n∑

k=1

∫ t

s

xkj(τ) dgik(τ)

)l,m

i,j=1

for a 6 s 6 t 6 b,

Sj(G)(t) ≡ (sj(gik)(t))
l,n
i,k=1 (j = 1, 2) and Sc(G)(t) ≡ (sc(gik)(t))

l,n
i,k=1 .
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If D1 ⊂ R
n and D2 ⊂ R

n×m, then Car([a, b] × D1, D2;G) is the Carathéodory

class, i.e., the set of all mappings F = (fkj)
n,m
k,j=1 : [a, b] × D1 → D2 such that for

each i ∈ {1, . . . , l}, j ∈ {1, . . . ,m} and k ∈ {1, . . . , n}

(i) the function fkj(·, x) : [a, b] → D2 is µ(sc(gik))-measurable for every x ∈ D1;

(ii) the function fkj(t, ·) : D1 → D2 is continuous for µ(sc(gik))-almost every t ∈

[a, b] and for every t ∈ Dgik , and

sup{|fkj(·, x)| : x ∈ D0} ∈ L([a, b],R; gik)

for every compact D0 ⊂ D1.

If Gj : [a, b] → R
l×n (j = 1, 2) are nondecreasing matrix-functions, G(t) ≡

G1(t)−G2(t), and X : [a, b] → R
n×m, then

∫ t

s

dG(τ) ·X(τ) =

∫ t

s

dG1(τ) ·X(τ)−

∫ t

s

dG2(τ) ·X(τ) for a 6 s 6 t 6 b,

Sk(G)(t) ≡ Sk(G1)(t)− Sk(G2)(t) (k = 1, 2)

and

Sc(G)(t) ≡ Sc(G1)(t) − Sk(G2)(t).

If G1(t) ≡ V (G)(t) and G2(t) ≡ V (G)(t) −G(t), then

L([a, b], D;G) =

2⋂

j=1

L([a, b], D;Gj),

Car([a, b]×D1, D2;G) =

2⋂

j=1

Car([a, b]×D1, D2;Gj).

If G(t) ≡ diag(t, . . . , t), then we omit G in the notation containing G.

If X ∈ BV([a, b];Rn×n), Y ∈ BV([a, b];Rn×m), and

det(In −∆−X(t)) 6= 0 and det(In +∆+X(t)) 6= 0 for t ∈ [a, b],

then

A(X,Y )(t, t) = On×m for t ∈ [a, b],

A(X,Y )(t, s) = Y (t)− Y (s) +
∑

s<τ6t

∆−X(τ) · (In −∆−X(τ))−1∆−Y (τ)

−
∑

s6τ<t

∆+X(τ) · (In +∆+X(τ))−1∆+Y (τ) for a 6 s < t 6 b,

A(X,Y )(t, s) = −A(X,Y )(s, t) for a 6 s < t 6 b.

583



The inequalities between the vectors and between the matrices are understood

componentwise.

Below we assume that

A1(t) ≡ V (A)(t) and A2(t) ≡ V (A)(t) −A(t).

A vector-function x ∈ BV([a, b],Rn) is said to be a solution of the system (1.1) if

x(t) = x(s) +

∫ t

s

dA(τ) · f(τ, x(τ)) for a 6 s 6 t 6 b.

Under the solution of the problem (1.1), (1.2) we mean a solutions of the sys-

tem (1.1) satisfying the boundary condition (1.2).

Let B ∈ BV([a, b],Rn×n), η : [a, b] → R
n and q : BV([a, b],Rn

+) → BV([a, b],Rn)

be a matrix-function, a vector-function and an operator, respectively. Then by a so-

lution of the system of generalized ordinary differential inequalities

dx− dB(t) · x 6 dη(t) + dq(x) (>)

we mean a vector-function x ∈ BV([a, b],Rn) such that

x(t) − x(s)−

∫ t

s

dB(τ) · x(τ) 6 η(t)− η(s) + q(x)(t) − q(x)(s) (>)

for a 6 s 6 t 6 b.

In addition, if the vector-function η : [a, b] → R
n is nondecreasing and g :

BV([a, b],Rn
+) → BV([a, b],Rn

+) is a positive homogeneous nondecreasing opera-

tor, then by ΩB,η,g we denote the set of all solutions of the system

|dx− dB(t) · x| 6 dη(t) + dg(|x|).

If η(t) ≡ 0 and q is the trivial operator, then we omit η and g in the symbols

containing them. So ΩB is the set of all solutions of the homogeneous system of

generalized differential equations

dx = dB(t) · x.

We define

αl(t) =

n∑

i=1

v(ail)(t) (l = 1, . . . , n) and α(t) =

n∑

i=1

αi(t) for t ∈ [a, b].
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Definition 1.1. The pair (P, l) of a matrix-function P ∈ Car([a, b]×R
n,Rn×n;A)

and a continuous operator l : BVs([a, b],R
n) × BVs([a, b],R

n) → R
n is said to be

consistent if

(i) for any fixed x ∈ BVs([a, b],R
n) the operator l(x, ·) : BVs([a, b],R

n) → R
n is

linear;

(ii) for any z ∈ R
n, x and y ∈ BVs([a, b],R

n) the inequalities

‖P (t, z)‖ 6 ξ(t, ‖z‖), ‖l(x, y)‖ 6 ξ0(‖x‖s) · ‖y‖s

are fulfilled for µ(gc(α))-almost all t ∈ [a, b] and for t ∈ Dα, where ξ0 : R+ → R+

is a nondecreasing function, and ξ : [a, b]× R+ → R+ is a nondecreasing in the

second variable function such that ξ(·, s) ∈ L([a, b],R+;α) for every s ∈ R+;

(iii) there exists a positive number β such that for any y ∈ BVs([a, b],R
n), q ∈

L([a, b],Rn;A) and c0 ∈ R
n, for which the conditions

det(In −∆−A(t) · P (t, y(t))) 6= 0 for t ∈ [a, b]

and

det(In +∆+A(t) · P (t, y(t))) 6= 0 for t ∈ [a, b]

hold, an arbitrary solution x of the boundary value problem

dx = dA(t) · (P (t, y(t))x + q(t)), l(x, y) = c0

admits the estimate

(1.4) ‖y‖s 6 β(‖c0‖+ ‖q‖L,α).

Theorem 1.1. Let A ∈ BV([a, b],Rn×n), f ∈ Car([a, b] × R
n,Rn;A) and let

there exist a positive number ̺ and a consistent pair (P, l) of a matrix-function

P ∈ Car([a, b] × R
n,Rn×n;A) and a continuous operator l : BVs([a, b],R

n) ×

BVs([a, b],R
n) → R

n such that an arbitrary solution of the problem

dx = dA(t) · (P (t, x)x + λ[f(t, x)− P (t, x)]x),(1.5)

l(x, x) = λ[l(x, x) − h(x)](1.6)

admits the estimate

(1.7) ‖x‖s 6 ̺

for any λ ∈ ]0, 1[. Then problem (1.1), (1.2) is solvable.
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Definition 1.2. Let S ⊂ BVs([a, b],R
n×n), let L be a subset of the set of all

bounded vector-functionals l : BVs([a, b],R
n) → R

n and y ∈ BV([a, b],Rn). We say

that

(i) a matrix-function B0 ∈ BV([a, b],Rn×n) belongs to the set En
S
if the condition

(1.8) det(In −∆−B0(t)) 6= 0 and det(In +∆+B0(t)) 6= 0 for t ∈ [a, b]

holds and there exists a sequence Bk ∈ S (k = 1, 2, . . .) such that

(1.9) lim
k→∞

‖Bk −B0‖s = 0;

(ii) a vector-functional l0 : BVs([a, b],R
n) → R

n belongs to the set En
L
(y) if there

exists a sequence lk ∈ L (k = 1, 2, . . .) such that

(1.10) lim
k→∞

lk(y) = l0(y).

Definition 1.3. Let g0 : BV([a, b],Rn
+) → BV([a, b],Rn) be a positive homoge-

neous nondecreasing operator and h0 : BVs([a, b],R
n
+) → R

n
+ a positive homogeneous

operator. We say that the pair (S,L) of a set S ⊂ BVs([a, b],R
n×n) and a set L of

some vector-functionals l : BVs([a, b],R
n) → R

n belongs to the Opial class On
g0,h0

if

(i) every operator l ∈ L is linear and continuous with respect to the norm ‖·‖s;

(ii) there exist numbers r0, ξ0 ∈ R+ and a nondecreasing function ϕ : [a, b] → R

such that the inequalities

(1.11) ‖B(a)‖ 6 r0, ‖B(t)−B(s)‖ 6 ϕ(t)− ϕ(s) for a 6 s < t 6 b

and

(1.12) ‖l(y)‖ 6 ξ0‖y‖s

are fulfilled for any B ∈ S, l ∈ L and y ∈ BVs([a, b],R
n);

(iii) if for B0 ∈ En
S
a function y ∈ BVs([a, b],R

n) is a solution of the system

(1.13) |dy − dB0(t) · y| 6 dg0(|y|)

under the condition

(1.14) |l0(y)| 6 h0(|y|),

where l0 ∈ En
L
(y), then y(t) ≡ 0.
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If g0(y)(t) ≡
∫ t

a
dG0(τ) · q0(y)(τ) for y ∈ BV([a, b],Rn

+), where G0 : [a, b] → R
n

is a nondecreasing matrix-function, and q0 : BVs([a, b],R
n
+) → BVs([a, b],R

n
+) is

a positive homogeneous operator, then we write On
G0,q0,h0

instead of On
g0,h0
.

Definition 1.4. Let P ∈ Car([a, b] × R
n,Rn×n;A) and let l : BVs([a, b],R

n) ×

BVs([a, b],R
n) → R

n be a continuous vector-functional. We say that the pair

(B0, l0) of the matrix-function B0 ∈ BV([a, b],Rn×n) and the vector-functional l0 :

BVs([a, b],R
n) → R

n belongs to the set En
A,P,l if there exists a sequence xk ∈

BVs([a, b],R
n) (k = 1, 2, . . .) such that the conditions

(1.15) lim
k→∞

∫ t

a

dA(τ) · P (τ, xk(τ)) = B0(t) uniformly on [a, b]

and

(1.16) lim
k→∞

l(xk, y) = l(y) for y ∈ ΩB0

are valid.

Definition 1.5. We say that the pair (P, l) of a matrix-function P ∈ Car([a, b]×

R
n,Rn×n;A) and a continuous operator l : BVs([a, b],R

n) × BVs([a, b],R
n) → R

n

belongs to the Opial class On
A with respect to the matrix-function A if

(i) for any fixed x ∈ BVs([a, b],R
n) the operator l(x, ·) : BVs([a, b],R

n) → R
n is

linear;

(ii) for any z ∈ R
n, x and y ∈ BVs([a, b],R

n) the inequalities

‖P (t, z)‖ 6 ξ(t),(1.17)

‖l(x, y)‖ 6 ξ0‖y‖s

are fulfilled for µ(gc(α))-almost all t ∈ [a, b] and for t ∈ Dα, where ξ0 ∈ R+ and

ξ ∈ L([a, b],R+;α);

(iii) the problem

dy = dB0(t) · y,(1.18)

l0(y) = 0(1.19)

has only the trivial solution for every pair (B0, l0) ∈ En
A,P,l.

Remark 1.1. By (1.10) and (1.15), the condition

‖∆−A(t)‖ · ξ(t) < 1 and ‖∆+A(t)‖ · ξ(t) < 1 for t ∈ [a, b]

guarantees condition (1.8).
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Corollary 1.1. Let A ∈ BV([a, b],Rn×n), f ∈ Car([a, b]×R
n,Rn;A) and let there

exist a positive number ̺ and a pair (P, l) ∈ On
A such that an arbitrary solution of

problem (1.5), (1.6) admits the estimate (1.7) for any λ ∈ ]0, 1[. Then problem (1.1),

(1.2) is solvable.

Corollary 1.2. Let A ∈ BV([a, b],Rn×n), f ∈ Car([a, b] × R
n,Rn;A), P ∈

L([a, b],Rn×n;A), and let l : BVs([a, b],R
n) → R

n be a bounded linear operator

such that

det(In −∆−A(t) · P (t)) 6= 0 and det(In +∆+A(t) · P (t)) 6= 0 for t ∈ [a, b]

and the problem

(1.20) dy = dA(t) · P (t)y, l(y) = 0

has only the trivial solution. Let, moreover, there exist a positive number ̺ such

that an arbitrary solution of the problem

dx = dA(t) · (P (t)x + λ[f(t, x)− P (t)x]),(1.21)

l(x) = λ[l(x) − h(x)](1.22)

admits the estimate (1.7) for any λ ∈ ]0, 1[. Then problem (1.1), (1.2) is solvable.

The following result is analogous to the well-known one belonging to R.Conti and

Z.Opial for boundary value problems for ordinary nonlinear differential equations

(see, [11], [14], [21]).

Corollary 1.3. Let A ∈ BV([a, b],Rn×n), f ∈ Car([a, b] × R
n,Rn;A) and let

a pair (P, l) ∈ On
A be such that

(1.23) |f(t, x)− P (t, x)x| 6 β(t, ‖x‖) for t ∈ [a, b], x ∈ R
n

and

(1.24) |h(x)− l(x, x)| 6 l0(|x|) + l1(‖x‖s) for x ∈ BVs([a, b],R
n),

where β ∈ Car([a, b] × R+,R
n
+;A) is a nondecreasing in second variable vector-

function, l0 : BVs([a, b],R
n
+) → R

n
+ is a positive homogeneous continuous operator,

and l1 ∈ C(R+,R
n
+). Let, moreover,

(1.25) lim
k→∞

1

̺

∫ b

a

dV (A)(τ) · β(τ, ̺) = On, lim
̺→∞

l1(̺)

̺
= On.

Then problem (1.1), (1.2) is solvable.
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By YP (x) we denote the fundamental matrix of the system

dy = dA(t) · P (t, x(t))y

for every x ∈ BVs([a, b],R
n), satisfying the condition YP (x)(a) = In.

Corollary 1.4. Let A ∈ BV([a, b],Rn×n), f ∈ Car([a, b] × R
n,Rn;A), P ∈

Car([a, b]×R
n,Rn×n;A) and let a continuous operator l : BVs([a, b],R

n)×BVs([a, b],

R
n) → R

n, satisfying conditions (i) and (ii) of Definition 1.5, be such that condi-

tions (1.23)–(1.25) hold, where β ∈ Car([a, b]×R+,R
n
+;A) is a nondecreasing in the

second variable vector-function, l0 : BVs([a, b],R
n
+) → R

n
+ is a positive homogeneous

continuous operator, and l1 ∈ C(R+,R
n
+). Let, moreover,

(1.26) inf{|det(l(x, YP (x)))| : x ∈ BVs([a, b],R
n)} > 0.

Then problem (1.1), (1.2) is solvable.

Remark 1.2. In Corollary 1.4 condition (1.26) cannot be replaced by the condi-

tion

(1.27) det(l(x, YP (x))) 6= 0 for x ∈ BVs([a, b],R
n).

The corresponding example for ordinary differential systems, i.e., for the case when

A(t) ≡ diag(t, . . . , t), was constructed in [16]. Basing on this example, it is not

difficult to construct analogous examples for the case when A(t) 6≡ diag(t, . . . , t).

Consider the scalar boundary value problem

dx(t) =
( x(t)

1 + |x(t)|
+ 1

)
dα(t), x(a) = x(b),

where α(t) = 0 for a 6 t 6 c and α(t) = 1 for c < t 6 b, and c = (a + b)/2. This

problem is not solvable because x(a) < x(b) for every solution x of this equation.

On the other hand, in this case

det(l(x, YP (x))) =
1

1 + |x(c)|
for x ∈ BVs([a, b],R

n).

Therefore, all conditions of Corollary 1.4 are fulfilled except condition (1.26), instead

of which condition (1.27) holds.
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2. Auxiliary propositions

Lemma 2.1. Let αk, βk ∈ BVs([a, b],R) (k = 0, 1, . . .) be such that

lim
k→∞

‖βk − β0‖s = 0,

lim
k→∞

sup varba(αk) < ∞

and

lim
k→∞

(αk(t)− αk(a)) = α0(t)− α0(a) uniformly on [a, b].

Then

lim
k→∞

∫ t

a

βk(τ) dαk(τ) =

∫ t

a

β0(τ) dα0(τ) uniformly on [a, b].

Lemma 2.2. Let Y, Yk ∈ BVs([a, b],R
n×m) (k = 1, 2, . . .) be such that

lim
k→∞

Yk(t) = Y (t) for t ∈ [a, b]

and

‖Yk(t)− Yk(s)‖ 6 lk + ‖g(t)− g(s)‖ for a 6 s 6 t 6 b (k = 1, 2, . . .),

where lk > 0, lk → 0 as k → ∞, and g : [a, b] → R
n is a nondecreasing vector-

function. Then

lim
k→∞

‖Yk − Y ‖s = 0.

The proofs of Lemmas 2.1 and 2.2 are given in [2] and [7], respectively.

Lemma 2.3 (Lemma on a priori estimates). Let g0 : BV([a, b],Rn
+) → BV([a, b],

R
n
+) and h0 : BVs([a, b],R

n
+) → R

n
+ be positive homogeneous nondecreasing and

continuous operators and, in addition, let g0(y) : [a, b] → R
n be a nondecreasing

vector-function for y ∈ BV([a, b],Rn
+). Let, moreover, (S,L) ∈ On

g0,h0
. Then there

exists a positive number ̺ such that every solution of the problem

|dy − dB0(t) · y| 6 dg0(|y|) + dη0(t),(2.1)

|l0(y)| 6 h0(|y|) + ζ0(2.2)

admits the estimate

(2.3) ‖y‖s 6 ̺0(‖ζ0‖+ ‖η0(b)− η0(a)‖)
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for every matrix-function B0 ∈ En
S
, vector-functional l0 ∈ L, nondecreasing vector-

function η0 : [a, b] → R
n and every number ζ0 ∈ R+.

P r o o f. Let us assume that the statement of the lemma is not true. Then for

every natural k there exist a matrix-function Bk ∈ En
S
, a linear operator lk ∈ L,

a nondecreasing function ηk : [a, b] → R
n, a number ζk ∈ R+ and a solution yk of

the problem

|dyk − dBk(t) · yk| 6 dg0(|yk|) + dηk(t),(2.4)

|lk(yk)| 6 h0(|yk|) + ζk(2.5)

such that

(2.6) ‖yk‖s > k(‖ζk‖+ ‖ηk(b)− ηk(a)‖).

According to the definition of the set En
S
, for every natural k there exists a sequence

Bki ∈ S (i = 1, 2, . . .) such that

lim
i→∞

‖Bki −Bk‖s = 0.

Consequently, by Definition 1.3, the matrix-function Bki satisfies the inequalities

(1.11) as well and so

‖Bk(a)‖ 6 r0, ‖Bk(t)−Bk(s)‖ 6 ϕ(t)− ϕ(s)(2.7)

for a 6 s < t 6 b (k = 1, 2, . . .).

Consequently, according to Helly’s choice theorem and Lemma 2.2, without loss of

generality we can assume that equality (1.9) holds for some matrix-function B0 ∈

BVs([a, b],R
n×n). In addition, by the definition of the set En

S
we have B0 ∈ En

S
.

Let

zk(t) =
1

‖yk‖s
yk(t) and η̃k(t) =

1

‖yk‖s
ηk(t) for t ∈ [a, b] (k = 1, 2, . . .).

Then

(2.8) ‖zk‖s = 1 (k = 1, 2, . . .).

On the other hand, by (2.4)–(2.6), for every natural k we have

|dzk − dBk(t) · zk| 6 dg0(|zk|) + dη̃k(t),(2.9)

|lk(zk)| 6 h0(|zk|) +
1

k
e(2.10)
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and

(2.11) ‖η̃k(b)− η̃k(a)‖ <
1

k
,

where e is the vector all components of which are 1.

By the definition of solutions of generalized differential inequalities we find

(2.12)

∣∣∣∣zk(t)− zk(s)−

∫ t

s

dBk(t) · zk(t)

∣∣∣∣ 6 η̃k(t)− η̃k(s)

+ g0(|zk|)(t)− g0(|zk|)(s) for a 6 s 6 t 6 b (k = 1, 2, . . .)

and

|zk(t)− zk(s)| 6 η̃k(t)− η̃k(s) + varba(Bk) · ‖zk‖s + g0(|zk|)(t)− g0(|zk|)(s)

for a 6 s 6 t 6 b (k = 1, 2, . . .).

From this, (2.7), (2.8) and (2.11) we have

varba(zk) 6
1

k
+ ϕ(b)− ϕ(a) + g0(e)(b)− g0(e)(a) (k = 1, 2, . . .)

and therefore, according to Helly’s choice theorem and Lemma 2.2, without loss of

generality we can assume that

(2.13) lim
k→∞

‖zk − y‖s = 0

for some y ∈ BV([a, b],Rn). It follows from this and (2.8) that

(2.14) ‖y‖s = 1.

Further, it is clear that

∥∥∥∥
∫ t

a

dBk(τ) · zk(τ) −

∫ t

a

dB0(τ) · y(τ)

∥∥∥∥

6

∥∥∥∥
∫ t

a

dBk(τ) · zk(τ)−

∫ t

a

dBk(τ) · y(τ)

∥∥∥∥

+

∥∥∥∥
∫ t

a

dBk(τ) · y(τ)−

∫ t

a

dB0(τ) · y(τ)

∥∥∥∥

6 varba(Bk) · ‖zk − y‖s +

∥∥∥∥
∫ t

a

dBk(τ) · y(τ) −

∫ t

a

dB0(τ) · y(τ)

∥∥∥∥
for a 6 t 6 b (k = 1, 2, . . .).
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Applying Lemma 2.1, from this, taking into account (1.9), (2.7) and (2.13), we find

lim
k→∞

∫ t

a

dBk(τ) · zk(τ) =

∫ t

a

dB0(τ) · y(τ) uniformly for a 6 t 6 b.

By this, (2.11) and (2.13), from (2.12) we conclude

∣∣∣∣y(t)− y(s)−

∫ t

s

dB0(τ) · y(τ)

∣∣∣∣ 6 g0(|y|)(t)− g0(|y|)(s)

for a 6 s 6 t 6 b (k = 1, 2, . . .),

i.e., y is a solution of the system of generalized differential inequalities

(2.15) |dy − dB0(t) · y| 6 dg0(|y|).

On the other hand, in view of (2.8) and (2.10)

(2.16) |lk(zk)| 6 h0(e) +
1

k
e.

Therefore, without loss of generality we can assume that the sequence lk(zk) (k =

1, 2, . . .) is convergent. Moreover, because of (1.12)

‖lk(zk)− lk(y)‖ = ‖lk(zk − y)‖ 6 ξ0‖zk − y‖s.

From this and (2.13), passing to the limit in (2.16) as k → ∞, we obtain that

l0(y) = lim
k→∞

lk(zk) = lim
k→∞

lk(y) 6 h0(e).

Consequently, inequality (1.14) is valid.

We obtained that y is a solution of problem (1.13), (1.14), where l0) ∈ En
L
(y). So

that, due to condition (iii) of Definition 1.3, we have y(t) ≡ 0. But this contradicts

the condition (2.14). The lemma is proved. �

The following lemma is analogous to Lemma 2.3 for the set On
A,0.
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Lemma 2.3′. Let (P, l) ∈ On
A. Then there exists a positive number ̺ such that

every solution of the problem

|dy − dB0(t) · y| 6 dη0(t), |l0(y)| 6 ζ0

admits the estimate

‖y‖s 6 ̺0(‖ζ0‖+ ‖η0(b)− η0(a)‖)

for every pair (B0, l0) ∈ En
A,P,l, a nondecreasing function η0 : [a, b] → R

n and every

number ζ0 ∈ R+.

P r o o f. The proof of this lemma is the same as the proof of Lemma 2.3, where

we assume S = En
S
and L = {l(x, ·) : x ∈ BV([a, b],Rn)}. Let y and B0 be the vector-

and matrix-functions, respectively, appearing in the proof of Lemma 2.3. Then, in

this case, the system of inequalities (2.15) coincides with the system (1.18), and the

vector-inequality (1.14) coincides with the equality

(2.17) lim
k→∞

|l(xk, y)| = 0

for some sequence xk (k = 1, 2, . . .) from BV([a, b],Rn).

Let now y1, . . . , yn be a fundamental system os solutions of system (1.18). By

condition (ii) of Definition 1.4, we can assume without loss of generality that the

sequence l(xk, ym) (k = 1, 2, . . .) is convergent for every m ∈ {1, . . . , n}. Let an

operator l0 : ΩB0
→ R

n be defined by

l0(z) =

n∑

m=1

cm lim
k→∞

l(xk, ym),

where c1, . . . , cm are the numbers such that z(t) ≡
n∑

m=1
cmym(t). Hence, due to

(2.17) and Hahn-Banach’s theorem, y is the solution of problem (1.18), (1.19). So

that, in view of condition (iii) of Definition 1.5, we have y(t) ≡ 0 just as above, since

(B0, l0) ∈ En
A,P,l. �

3. Proofs of the main results

P r o o f of Theorem 1.1. Let ξ and ξ0 be the functions appearing in Definition 1.1

and corresponding to the consistent pair (P, l).
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Set

γ(t) = 2n2̺ξ(t, 2̺) + sup{‖f(t, y)‖ : y ∈ R
n, ‖y‖ 6 2̺},

γ0 = 2̺ξ0(2̺) + sup{‖h(y)‖ : ‖y‖s 6 2̺},

σ(s) =





1 for 0 6 s 6 ̺,

2− s/̺ for ̺ < s < 2̺,

0 for s > 2̺;

(3.1)

q(y)(t) = σ(‖y‖s) · (f(t, y(t))− P (t, y(t))y(t))(3.2)

for t ∈ [a, b], y ∈ BV([a, b],Rn)

and

(3.3) c0(y) = σ(‖y‖s) · (l(y, y)− h(y)) for y ∈ BV([a, b],Rn).

Then γ ∈ L([a.b],R;α), γ0 < ∞ and the inequalities

(3.4) ‖q(y)(t)‖ 6 γ(t) for y ∈ BV([a, b],Rn)

and

(3.5) ‖c0(y)‖ 6 γ0 for y ∈ BV([a, b],Rn)

are valid for µ(α)-almost all t ∈ [a, b] and for t ∈ Dα.

For an arbitrary fixed y ∈ BV([a, b],Rn), let us consider the linear boundary value

problem

(3.6) dx = dA(t) · (P (t, y(t))x + q(y)(t)), l(y, x) = c0(y).

By virtue of condition (iii) of Definition 1.1, the homogeneous problem

(3.7) dx = dA(t) · P (t, y(t))x, l(y, x) = 0

has only the trivial solution. Therefore, by Theorem 1.1 from [9] problem (3.6) has

a unique solution x. In view of (1.4) and (3.4)–(3.6), this solution admits the estimate

‖x‖s 6 β

(
‖c0(y)‖+

∫ b

a

‖q(y)(t)‖ dα(t)

)
6 β

(
γ0 +

∫ b

a

‖q(y)(t)‖ dα(t)

)

and, therefore,

(3.8) ‖x‖s 6 r0,
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where

r0 = β(γ0 + ‖γ‖L,α).

On the other hand, by the definition of solutions and (3.4), (3.5) we have

varba(x) 6

∥∥∥∥
∫ b

a

dA(t) · (|P (t, y(t))| · |x(t)|+ |q(y)(t)|)

∥∥∥∥

6 r0

∫ b

a

‖P (t, y(t))‖ dα(t) + ‖γ‖L,α,

i.e., by condition (ii) of Definition 1.1, we find

(3.9) varba(x) 6 r0

∫ b

a

ξ(t, ‖y‖s) dα(t) + ‖γ‖L,α.

Let now

U = {y ∈ BV([a, b],Rn) : ‖y‖s 6 r0, varba(y) 6 r1},

where

r1 = r0

∫ b

a

ξ(t, ‖y‖s) dα(t) + ‖γ‖L,α.

Let ω : BV([a, b],Rn) → BV([a, b],Rn) be an operator which to every y ∈

BV([a, b],Rn) assigns the solution x of problem (3.6).

Let y ∈ U and x = ω(y). Then by (3.8) and (3.9) we have

‖ω(y)‖s 6 r0

and

(3.10) varba(ω(y)) 6 r1,

i.e. ω(y) ∈ U . So

(3.11) ω(U) ⊂ U.

It is evident that U is a closed and convex subset of BVv([a, b],R
n).

Let us show that ω is a continuous operator with respect to the norm ‖·‖v.

Let a sequence yk ∈ U (k = 0, 1, . . .) be such that

(3.12) lim
k→∞

‖yk − y0‖v = 0.

Then

lim
k→∞

‖yk − y0‖s = 0
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and by (3.3)

(3.13) lim
k→∞

c0(yk) = c0(y0),

since the operators l and h are continuous with respect to the norm ‖·‖s. Let now

Ãk(t) ≡

∫ t

a

dA(τ) · P (τ, yk(τ)) (k = 0, 1, . . .).

Then

|Ãk(t)− Ã0(t)| 6

∫ b

a

dV (A)(τ) · |P (τ, yk(τ)) − P (τ, y0(τ))|

for t ∈ [a, b] (k = 1, 2, . . .).

Moreover,

lim
k→∞

∫ b

a

dV (A)(τ) · |P (τ, yk(τ)) − P (τ, y0(τ))| = 0

because P ∈ Car([a, b] × R
n,Rn×n;A) and, therefore, according to the Lebesgue

theorem

lim
k→∞

Ãk(t) = Ã0(t) uniformly on [a, b].

Using condition (ii) of Definition 1.1, we obtain

varba(In + Ãk) 6 b− a+

∫ b

a

ξ(τ, r) dα(τ),

where r is some large enough positive number, independent of k. Consequently,

taking into account (3.13), condition (iii) of Definition 1.1 and the fact that the

vector-functionals l(yk, ·) (k = 0, 1, . . .) are continuous on the space BVs([a, b],R
n),

we conclude that the conditions of Theorem 1.1 from [5] are fulfilled for Hk(t) ≡ In

(k = 0, 1, . . .). Due to this theorem,

(3.14) lim
k→∞

‖xk − x‖s = 0.

Let us show that

(3.15) lim
k→∞

‖xk − x‖v = 0.
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We have

xk(t)− x(t) − (xk(s)− x(s)) =

∫ t

s

dA(τ) · P (τ, yk(τ))(xk(τ)− x(τ))

+

∫ t

s

dA(τ) · (P (τ, yk(τ)) − P (τ, y(τ))x(τ)

+

∫ t

s

dA(τ) · (q(yk)(τ)) − q(y)(τ)) for a 6 s < t 6 b (k = 1, 2, . . .).

From this and condition (ii) of Definition 1.1 we conclude

varba(xk − x) 6 n2‖xk − x‖s

∫ t

s

ξ(τ, r0 + r1) dα(τ)

+ (1 + ‖x‖s)

∥∥∥∥
∫ t

s

dV (A)(τ) · |P (τ, yk(τ)) − P (τ, y(τ)|

∥∥∥∥

+

∥∥∥∥
∫ t

s

dV (A)(τ) · (q(yk)(τ)) − q(y)(τ))

∥∥∥∥

for any large enough natural k. From this, due to conditions (3.12), (3.14) and the

Lebesgue theorem, condition (3.15) follows. So ω is continuous with regard to the

norm ‖·‖v.

Let us verify that the set ω(U) is precompact. Consider an arbitrary sequence of

functions yk (k = 1, 2, . . .) from U . As above, assume xk = ω(yk) (k = 1, 2, . . .).

Then by (3.9) and (3.10) the sequences xk (k = 1, 2, . . .) and yk (k = 1, 2, . . .) satisfy

the conditions of Helly’s choice theorem. Therefore, there exist vector-functions

x0, y0 ∈ BV([a, b],Rn) and a sequence of natural numbers ki (i = 1, 2, . . .) such that

(3.16) lim
i→∞

xki
(t) = x0(t) and lim

i→∞
yki

(t) = y0(t) for t ∈ [a, b].

Taking into account these equalities and passing to the limit as i → ∞ in the equal-

ities

xki
(t) = xki

(a) +

∫ t

a

dA(τ) · (P (τ, yki
(τ))xki

(τ) + q(yki
)(τ)) for t ∈ [a, b],

according to the Lebesgue theorem we find

x0(t) = x0(a) +

∫ t

s

dA(τ) · (P (τ, y0(τ))x0(τ) + q(y0)(τ)) for t ∈ [a, b].
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Hence

‖xki
− x0‖v 6 ‖xki

(a)− x0(a)‖

+

∥∥∥∥
∫ b

a

dV (A)(τ) · |P (τ, yki
(τ))| · |xki

(τ)− x0(τ)|

∥∥∥∥

+

∥∥∥∥
∫ b

a

dV (A)(τ) · (|P (τ, yki
(τ)) − P (τ, y0(τ))| · |x0(τ)| + |q(yki

)(τ) − q(y0)(τ)|)

∥∥∥∥.

From this, using the Lebesgue theorem, in view of condition (ii) of Definition 1.1

and (3.16), we have

lim
i→∞

‖xki
− x0‖v = 0.

Consequently, the set ω(U) is precompact in the space BVv([a, b],R
n). Therefore,

owing to Schauder’s principle, there exists x ∈ U such that

x(t) = ω(x)(t) for t ∈ [a, b].

By equalities (3.2) and (3.3), x is obviously a solution of problem (1.5), (1.6), where

(3.17) λ = σ(‖x‖s).

Let us show that the function x admits the estimate (1.7). Suppose the contrary.

Then either

(3.18) ̺ < ‖x‖s < 2̺

or

(3.19) ‖x‖s > 2̺.

If we assume that inequality (3.18) is fulfilled, then because of (3.1) and (3.17)

we find that λ ∈ ]0, 1[. However, by the conditions of the theorem, in this case we

conclude that estimate (1.7) holds. But this contradicts condition (3.18).

Suppose now that inequality (3.19) is fulfilled. Then by (3.1) and (3.17) we es-

tablish that λ = 0. Hence, x is a solution of problem (3.7). But this is impossible

because problem (3.7) has only the trivial solution. The above obtained contradiction

proves the validity of estimate (1.7).

By virtue of (1.7), (3.1) and (3.17) it is clear that λ = 1. Therefore, x is a solution

of problem (1.1), (1.2). The theorem is proved. �
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P r o o f of Corollary 1.1. Let S = En
A,P and L = {l(x, ·) : x ∈ BV([a, b],Rn)}.

Then condition (P, l) ∈ On
A is equivalent to condition (S,L) ∈ On

0,0. So, due to

Lemma 2.3′, the pair (P, l) is consistent. Therefore, the corollary follows from The-

orem 1.1. The corollary is proved. �

P r o o f of Corollary 1.2. Let the matrix-function P and the linear operator l be

defined by P (t, x) ≡ P (t) and l(x, y) ≡ l(y). Then by Definition 1.5 the condition

(P, l) ∈ On
A is fulfilled if and only if problem (1.20) has only the trivial solution.

In addition, problem (1.5), (1.6) is equivalent to problem (1.21), (1.22). Therefore,

Corollary 1.2 follows from Corollary 1.1. The corollary is proved. �

P r o o f of Corollary 1.3. Let S and L be the sets defined in Corollary 1.1. Then

due to Lemma 2.3′ and conditions (1.23), (1.24) there exists a positive number ̺0
such that an arbitrary solution x of problem (1.5), (1.6) admits the estimate

(3.20) ‖x‖s 6 λ̺0

(
‖l1(‖x‖s)‖+

∥∥∥∥
∫ b

a

dV (A)(τ) · β(τ, ‖x‖s)

∥∥∥∥
)

for any λ ∈ ]0, 1[.

According to condition (1.25), there exists a positive number ̺1 such that for, any

λ ∈ ]0, 1[,

(3.21) λ̺0

(
‖l1(̺)‖+

∥∥∥∥
∫ b

a

dV (A)(τ) · β(τ, ̺)

∥∥∥∥
)

< ̺ for ̺ > ̺1.

If we assume that

‖x‖s > ̺1,

then by (3.21) we find

λ̺0

(
‖l1(‖x‖s)‖+

∥∥∥∥
∫ b

a

dV (A)(τ) · β(τ, ‖x‖s)

∥∥∥∥
)

< ‖x‖s,

which contradicts (3.20).

Hence we have

‖x‖s 6 ̺1.

Consequently, estimate (1.7) holds for every solution x of problem (1.5), (1.6). In

addition, the number ̺1 does not depend on x. So the corollary follows from Theo-

rem 1.1. The corollary is proved. �
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P r o o f of Corollary 1.4. Let us show that problem (1.18), (1.19) has only the

trivial solution for every pair (B0, l0) ∈ En
A,P,l appearing in Definition 1.5.

Let xk (k = 1, 2, . . .) be the sequence such that conditions (1.15) and (1.16) are

valid.

Due to Theorem 1.1 from [5] we have

(3.22) lim
k→∞

YP (xk)(t) = Y0(t) uniformly on [a, b],

where Y0 is the fundamental matrix of system (1.18) satisfying the condition

Y0(a) = In.

In view of (1.16), (3.22) and conditions (i) and (ii) of Definition 1.5 we have

‖l(xk, YP (xk))− l0(Y0)‖ 6 ‖l(xk, Y0)− l0(Y0)‖ + ‖l(xk, YP (xk)− l(xk, Y0)‖

6 ‖l(xk, Y0)− l0(Y0)‖+ ξ0 sup{‖YP (xk)(t)− Y0(t)‖ : t ∈ [a, b]} → 0

as k → ∞.

Thus

lim
k→∞

l(xk, YP (xk)) = l0(Y0)

and, therefore,

lim
k→∞

det(l(xk, YP (xk))) = det(l0(Y0)).

This implies that inequality (1.26) is equivalent to the condition det(l0(Y0)) 6= 0 for

every (B0, l0) ∈ En
A,P,l. Therefore, problem (1.18), (1.19) has only the trivial solution.

So condition (P, l) ∈ OA
0 is fulfilled. Consequently, Corollary 1.4 is equivalent to

Corollary 1.3. The corollary is proved. �

4. The theorem on solvability of problem (1.1), (1.3)

As mentioned in Section 1, we investigate problem (1.1), (1.3) under the assump-

tion that the vector-function f : [a, b]× R
n → R

n satisfies the Carathéodory condi-

tions, and the operators ti : BVs([a, b],R
n) → R

n (i = 1, 2) and B : BVs([a, b],R
n) →

R
n×n are continuous.

Let f(t, x) = (fl(t, x))
n
l=1, A(t) = (ail(t)

n
i,l=1, ail(t) ≡ a1il(t) − a2il(t), where

a1il(t) ≡ v(ail)(t) and a2il(t) ≡ v(ail)(t) − ail(t) (i, l = 1, . . . , n). Moreover, we

assume
I0 = {t1(x) : x ∈ BVs([a, b],R

n)},

‖B(x)‖0 = max{‖B(x)y‖ : y ∈ R
n, ‖y‖ = 1}.
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Let the function g ∈ L([a, b],R+;α) be such that

1− g(t)∆−α(t) 6= 0 and 1− g(t)∆+α(t) 6= 0 for t ∈ [a, b]),

where α is the function defined in Section 1. This condition guarantees the unique

solvability of the Cauchy problem

dγ = (−1)jg1(t)γ dα(t) for t ∈ [a, b], (−1)j(t− t1(x)) > 0 (j = 1, 2),(4.1)

γ(t1(x)) = 1(4.2)

for every x ∈ BV([a, b],Rn) and this solution γx,g(t) is given by the formula (see

[12], [13])

(4.3) γx,g(t) =





exp

(∫ t

t1(x)

g1(τ) dsc(τ)

) ∏

t1(x)<τ6t

(1− g1(τ)∆
−α(τ))−1

×
∏

t1(x)6τ<t

(1 + g1(τ)∆
+α(τ)) for t1(x) < t 6 b,

exp

(
−

∫ t

t1(x)

g1(τ) dsc(τ)

) ∏

t<τ6t1(x)

(1 + g1(τ)∆
−α(τ))

×
∏

t6τ<t1(x)

(1− g1(τ)∆
+α(τ))−1 for a 6 t < t1(x),

1 for t = t1(x).

Theorem 4.1. Let A ∈ BV([a, b],Rn×n), f ∈ Car([a, b] × R
n,Rn;A) and let

there exist functions g1 ∈ L([a, b],R+;αil) (i, l = 1, . . . , n) and g2 ∈ L([a, b],R+;αil)

(i, l = 1, . . . , n) such that

g1(t)∆
−α(t) < 1 and g1(t)∆

+α(t) < 1 for t ∈ [a, b];(4.4)

(−1)m+1fl(t, x1, . . . , xn) sgn[(t− t0)xi] 6 g1(t)|xl|+ g2(t)(4.5)

for µ(s0(amil))-almost all t ∈ [a, b], t ∈ Damil
, t0 ∈ [a, b], (xk)

n
k=1 ∈ R

n (m = 1, 2;

i, l = 1, . . . , n);

−〈∆−A(t0) · f(t0, x), sgnx〉 6 (g1(t)‖x‖+ g2(t))∆
−α(t0) and(4.6)

〈∆+A(t0) · f(t0, x), sgnx〉 6 (g1(t)‖x‖+ g2(t))∆
+α(t0)

for t0 ∈ [a, b], x ∈ R
n (j = 1, 2);

and

(4.7) γx(t2(x)) · ‖B(x)‖0 6 δ for t ∈ [a, b], x ∈ BV([a, b],Rn),

where γx(t) ≡ γx,g(t) is the function defined by equalities (4.3).

Then problem (1.1), (1.3) is solvable.
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P r o o f of Theorem 4.1. For every x and y ∈ BV([a, b],Rn), we suppose

h(x) = x(t1(x)) − B(x) · x(t2(x))− c0,

P (t, x) = g1(t) sgn(t− t1(x)) · In,

l(x, y) = y(t1(x)).

Obviously, P ∈ Car([a, b] × R
n,Rn×n;A), the operator l : BVs([a, b],R

n) ×

BVs([a, b],R
n) → R

n is continuous and the pair (P, l) is consistent.

By Theorem 1.1, to prove Theorem 4.1 it suffices to establish a priori boundedness

of solutions of the problem

dx = dA(t) · ((1 − λ)P (t, x)x + λf(t, x)),(4.8)

x(t1(x)) = λ(B(x) · x(t2(x)) + c0)(4.9)

uniformly with respect to λ ∈ ]0, 1[.

Let x = (xi)
n
i=1 be an arbitrary solution of problem (4.8), (4.9) for some λ ∈ ]0, 1[.

Let i ∈ {1, . . . , n} be fixed. Then

dxi(t) =

n∑

l=1

(1− λ)g1(t) sgn(t− t0)) · xl(t) dail(t)

+

n∑

l=1

λfl(t, x1(t), . . . , xn(t)) dail(t),

where t0 = t1(x). From this, by Lemma 2.2 from [8], we have

{
d|xi(t)| −

[ n∑

l=1

((1− λ)g1(t) sgn(t− t0) · |xl(t)| dv(ail)(t)(4.10)

+ λ sgnxi(t)fl(t, x1(t), . . . , xn(t)) dail(t))

]}
sgn(t− t0) 6 0

and

(4.11) ∆−|xi(t0)| > sgnxi(t0) ·

n∑

l=1

fl(t0, x1(t0), . . . , xn(t0))∆
−ail(t0)

and

∆+|xi(t0)| 6 sgnxi(t0) ·
n∑

l=1

fl(t0, x1(t0), . . . , xn(t0))∆
+ail(t0).
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Using (4.5), from (4.10) we get

sgn(t− t0) d|xi(t)| 6 (1 − λ)g1(t)

n∑

l=1

|xl(t)| dv(ail)(t)

+ λ

n∑

l=1

(g1(t)|xl(t)|+ g2(t)) dv(ail)(t)

and, therefore,

sgn(t− t0) d|xi(t)| 6
n∑

l=1

|xl(t)| dv(ail)(t) + λ
n∑

l=1

g2(t)) dv(ail)(t).

Summing over i the last inequality we find

(4.12) sgn(t− t0) du(t) 6 (g1(t)u(t) + g2(t)) dα(t) (j = 1, 2),

where u(t) ≡ ‖x(t)‖.

On the other hand, according to (4.6), (4.11) implies

∆−u(t0) > (g1(t0)u(t0) + g2(t0))∆
−α(t0)

and

∆+u(t0) 6 (g1(t0)u(t0) + g2(t0))∆
+α(t0).

Taking into account these estimates, (4.4) and (4.12), due to Lemma 2.4 from [3] we

have

(4.13) u(t) 6 v(t) for t ∈ [a, b],

where the function v is the unique solution of the Cauchy problem

dv = (−1)j(g1(t)v + g2(t)) dα(t) for (−1)j(t− t0) > 0 (j = 1, 2), v(t0) = u(t0).

According to the variation-of-constants formula (see Corollary III.2.14 from [24])

we get

v(t) = g2(t) sgn(t− t0) + γx(t)

{
u(t0)−

∫ t

t0

g2(s) sgn(s− t0) dγ
−1
x (s)

}
for t ∈ [a, b].

604



From this, using the formula of integration-by-parts (see Theorem I.4.33 from [24])

we obtain

v(t) = γx(t)u(t0) + γx(t)

{∫ t

t0

γ−1
x (s) dg2(s)−

∑

t0<s6t

d1γ
−1
x (s) d1g2(s)(4.14)

+
∑

t06s<t

d2γ
−1
x (s) d2g2(s)

}
for t0 < t 6 b.

On the other hand, (4.1) yields the equalities

djγ
−1
x (t) = −γ−1

x (t)(1 + g1(t) djα(t))
−1g1(t) djα(t) for t0 6 t 6 b.

Taking into account these equalities, from (4.14) we conclude that

v(t) = γx(t)u(t0) +

∫ t

t0

γx(t)γ
−1
x (s) dA(g̃1, g2)(s) for t0 < t 6 b,

where g̃1(t) =
∫ t

t0
g1(τ) dα(τ) for t ∈ [a, b].

Analogously we show that

v(t) = γx(t)u(t0)−

∫ t

t0

γx(t)γ
−1
x (s) dA(g̃1, g2)(s) for a 6 t < t0.

So, by (4.13)

(4.15) u(t) 6 γx(t)u(t0) +

∣∣∣∣
∫ t

t0

γx(t)γ
−1
x (s) dA(g̃1, g2)(s)

∣∣∣∣ for a 6 t 6 b.

Due to (4.3) and (4.4), it is evident that the function γx is nonincreasing on the

interval [a, t0] and nondecreasing on the interval [t0, b]. In addition, in view of (4.2),

we get

(4.16) γx(t) > 1 for t ∈ [a, b].

Besides, by (4.3) and (4.4) we have

ln(γx(t)) =

∫ t

t0

g1(τ) dsc(τ)−
∑

t0<τ6t

ln(1 − g1(τ) d1α(τ))

+
∑

t06τ<t

ln(1 + g1(τ) d2α(τ)) 6

∫ t

a

g1(τ) dsc(τ)

−
∑

a<τ6t

ln(1− g1(τ) d1α(τ)) +
∑

a6τ<t

ln(1 + g1(τ) d2α(τ)) for t0 < t 6 b
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and, consequently,

(4.17) ln(γx(t)) 6 ln(γ∗(t)) for t0 6 t 6 b,

where γ∗ is the unique solution of the Cauchy problem

dγ(t) = g1(t)γ(t) dα(t), γ(a) = 1.

Analogously we show that

(4.18) ln(γx(t)) 6 ln(γ∗(t)) for a 6 t 6 t0,

where γ∗ is the unique solution of the Cauchy problem

dγ = −g1(t)γ dα(t), γ(b) = 1.

On the other hand, γ∗ and γ∗ ∈ BV([a, b],R). From this, it follows that γ̃ ∈

BV([a, b],R), where γ̃(t) ≡ max{γ∗(t), γ
∗(t)}. Therefore, due to (4.17) and (4.18),

we have

(4.19) γx(t) 6 ̺1 for a 6 t 6 b,

where ̺1 = ‖γ̃‖v. It is evident that the number ̺1 does not depend on x.

By (4.15) and the equality t0 = t1(x), it is obvious that

(4.20) u(t2(x)) 6 γx(t2(x))u(t1(x)) +

∣∣∣∣
∫ t2(x)

t1(x)

γx(t2(x))γ
−1
x (s) dA(α, g2)(s)

∣∣∣∣.

Besides, condition (1.3) guarantees the estimate

(4.21) u(t1(x)) 6 ‖B(x)‖0 · u(t2(x)) + ‖c0‖.

Inequality (4.20), with regard to (4.16), (4.19) and (4.21), implies

u(t2(x)) 6 δu(t2(x)) + ̺1(‖c0‖+ |A(α, g2)(b)−A(α, g2)(a)|).

Hence,

(4.22) u(t2(x)) 6 ̺2,

where ̺2 = (1 − δ)−1̺1 · (‖c0‖ + |A(α, g2)(b) − A(α, g2)(a)|). However, as is clear

from (4.7) and (4.16),

‖B(x)‖0 6 δγ−1
x (t2(x)) 6 δ.

According to this inequality, (4.15), (4.21) and (4.22) imply the estimate (1.7), where

̺ = ̺1(δ̺2 + ‖c0‖ + |A(g̃1, g2)(b) − A(g̃1, g2)(a)|) is a positive constant which does

not depend on λ and x. The theorem is proved. �
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