H-ANTI-INVARIANT SUBMERSIONS FROM ALMOST QUATERNIONIC HERMITIAN MANIFOLDS

Kwang-Soon Park, Seoul

Received March 23, 2016. First published March 29, 2017.

Abstract

As a generalization of anti-invariant Riemannian submersions and Lagrangian Riemannian submersions, we introduce the notions of h-anti-invariant submersions and hLagrangian submersions from almost quaternionic Hermitian manifolds onto Riemannian manifolds. We obtain characterizations and investigate some properties: the integrability of distributions, the geometry of foliations, and the harmonicity of such maps. We also find a condition for such maps to be totally geodesic and give some examples of such maps. Finally, we obtain some types of decomposition theorems.

Keywords: Riemannian submersion; Lagrangian Riemannian submersion; decomposition theorem; totally geodesic

MSC 2010: 53C15, 53C26

1. Introduction

In 1960s, O'Neill in [17] and Gray in [10] introduced independently the notion of a Riemannian submersion, which is useful in many areas: physics ([6], [25], [5], [12], [13], [16]), medical imaging [15], robotic theory [1] (see [23]).

In 1976, Watson in [24] defined almost Hermitian submersions, which are Riemannian submersions from almost Hermitian manifolds onto almost Hermitian manifolds. Using this notion, he investigates a kind of structural problems among base manifold, fibers, total manifold. This notion was extended to almost contact manifolds in [7], locally conformal Kähler manifolds in [14], and quaternion Kähler manifolds in [11].

In 2010, Sahin in [22] introduced the notions of anti-invariant Riemannian submersions and Lagrangian Riemannian submersions from almost Hermitian manifolds onto Riemannian manifolds. Using this notions, he studies total manifolds. In particular, he investigates some kinds of decomposition theorems.

We know that Riemannian submersions are related with physics and have applications in Yang-Mills theory ([6], [25]), Kaluza-Klein theory ([5], [12]), supergravity and superstring theories ([13], [16]). And quaternionic Kähler manifolds have applications in physics as the target spaces for nonlinear σ-models with supersymmetry, see [8].

The paper is organized as follows. In Section 2 we recall some notions, which are needed in the later sections. In Section 3 we introduce the notions of h-antiinvariant submersions and h-Lagrangian submersions from almost quaternionic Hermitian manifolds onto Riemannian manifolds, give examples, and investigate some properties: the integrability of distributions, the geometry of foliations, the condition for such maps to be totally geodesic, and the condition for such maps to be harmonic. In Section 4 under h-anti-invariant submersions and h-Lagrangian submersions, we consider some decomposition theorems.

2. Preliminaries

Let (M, g, J) be an almost Hermitian manifold, where M is a C^{∞}-manifold, g is a Riemannian metric on M, and J is a compatible almost complex structure on (M, g) (i.e., $J \in \operatorname{End}(T M), J^{2}=-\mathrm{id}, g(J X, J Y)=g(X, Y)$ for $X, Y \in \Gamma(T M)$).

We call (M, g, J) a Kähler manifold if $\nabla J=0$, where ∇ is the Levi-Civita connection of g.

Let $\left(M, g_{M}\right)$ and $\left(N, g_{N}\right)$ be Riemannian manifolds.
Let $F:\left(M, g_{M}\right) \rightarrow\left(N, g_{N}\right)$ be a C^{∞}-map.
The second fundamental form of F is given by

$$
\left(\nabla F_{*}\right)(U, V):=\nabla_{U}^{F} F_{*} V-F_{*}\left(\nabla_{U} V\right) \quad \text { for } U, V \in \Gamma(T M),
$$

where ∇^{F} is the pullback connection along F and ∇ is the Levi-Civita connection of g_{M}, see [3].

Then the map F is harmonic if and only if trace $\left(\nabla F_{*}\right)=0$, see [3].
We call F a totally geodesic map if $\left(\nabla F_{*}\right)(U, V)=0$ for $U, V \in \Gamma(T M)$, see [3].
The map F is said to be a C^{∞}-submersion if F is surjective and the differential $\left(F_{*}\right)_{p}$ has maximal rank for any $p \in M$.

We call F a Riemannian submersion ([17], [9]) if F is a C^{∞}-submersion and

$$
\begin{equation*}
\left(F_{*}\right)_{p}:\left(\left(\operatorname{ker}\left(F_{*}\right)_{p}\right)^{\perp},\left(g_{M}\right)_{p}\right) \rightarrow\left(T_{F(p)} N,\left(g_{N}\right)_{F(p)}\right) \tag{2.1}
\end{equation*}
$$

is a linear isometry for any $p \in M$, where $\left(\operatorname{ker}\left(F_{*}\right)_{p}\right)^{\perp}$ is the orthogonal complement of the space $\operatorname{ker}\left(F_{*}\right)_{p}$ in the tangent space $T_{p} M$ to M at p.

Let $F:\left(M, g_{M}\right) \rightarrow\left(N, g_{N}\right)$ be a Riemannian submersion.
For any vector field $U \in \Gamma(T M)$ we write

$$
\begin{equation*}
U=\mathcal{V} U+\mathcal{H} U \tag{2.2}
\end{equation*}
$$

where $\mathcal{V} U \in \Gamma\left(\operatorname{ker} F_{*}\right)$ and $\mathcal{H} U \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$.
Define the O'Neill tensors \mathcal{T} and \mathcal{A} by

$$
\begin{align*}
\mathcal{A}_{U} V & =\mathcal{H} \nabla_{\mathcal{H U}} \mathcal{V} V+\mathcal{V} \nabla_{\mathcal{H} U} \mathcal{H} V \tag{2.3}\\
\mathcal{T}_{U} V & =\mathcal{H} \nabla_{\mathcal{V} U} \mathcal{V} V+\mathcal{V} \nabla_{\mathcal{V} U} \mathcal{H} V \tag{2.4}
\end{align*}
$$

for $U, V \in \Gamma(T M)$, where ∇ is the Levi-Civita connection of g_{M} ([17], [9]).
Let

$$
\begin{equation*}
\widehat{\nabla}_{V} W:=\mathcal{V} \nabla_{V} W \quad \text { for } V, W \in \Gamma\left(\operatorname{ker} F_{*}\right) \tag{2.5}
\end{equation*}
$$

Then we have

$$
\begin{align*}
\mathcal{A}_{X} Y & =-\mathcal{A}_{Y} X=\frac{1}{2} \mathcal{V}[X, Y] \tag{2.6}\\
\mathcal{T}_{U} V & =\mathcal{T}_{V} U \tag{2.7}
\end{align*}
$$

for $X, Y \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$ and $U, V \in \Gamma\left(\operatorname{ker} F_{*}\right)$.

Proposition 2.1 ([17], [9]). Let F be a Riemannian submersion from a Riemannian manifold (M, g_{M}) onto a Riemannian manifold $\left(N, g_{N}\right)$. Then we obtain

$$
\begin{align*}
g_{M}\left(\mathcal{T}_{U} V, W\right) & =-g_{M}\left(V, \mathcal{T}_{U} W\right), \tag{2.8}\\
g_{M}\left(\mathcal{A}_{U} V, W\right) & =-g_{M}\left(V, \mathcal{A}_{U} W\right), \tag{2.9}\\
\left(\nabla F_{*}\right)(U, V) & =\left(\nabla F_{*}\right)(V, U), \tag{2.10}\\
\left(\nabla F_{*}\right)(X, Y) & =0 \tag{2.11}
\end{align*}
$$

for $U, V, W \in \Gamma(T M)$ and $X, Y \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$.
We recall the notions of an anti-invariant Riemannian submersion and a Lagrangian Riemannian submersion.

Let F be a Riemannian submersion from an almost Hermitian manifold $\left(M, g_{M}, J\right)$ onto a Riemannian manifold $\left(N, g_{N}\right)$. The map F is said to be an anti-invariant Riemannian submersion, see [22], if $J\left(\operatorname{ker} F_{*}\right) \subset\left(\operatorname{ker} F_{*}\right)^{\perp}$.

We call F a Lagrangian Riemannian submersion, see [22], if $J\left(\operatorname{ker} F_{*}\right)=\left(\operatorname{ker} F_{*}\right)^{\perp}$.

Let M be a $4 m$-dimensional C^{∞}-manifold and let E be a rank 3 subbundle of $\operatorname{End}(T M)$ such that for any point $p \in M$ with a neighborhood U there exists a local basis $\left\{J_{1}, J_{2}, J_{3}\right\}$ of sections of E on U satisfying for all $\alpha \in\{1,2,3\}$

$$
J_{\alpha}^{2}=-\mathrm{id}, \quad J_{\alpha} J_{\alpha+1}=-J_{\alpha+1} J_{\alpha}=J_{\alpha+2}
$$

where the indices are taken from $\{1,2,3\}$ modulo 3 .
Then we call E an almost quaternionic structure on M and (M, E) an almost quaternionic manifold, see [2].

Moreover, let g be a Riemannian metric on M such that for any point $p \in M$ with a neighborhood U there exists a local basis $\left\{J_{1}, J_{2}, J_{3}\right\}$ of sections of E on U satisfying for all $\alpha \in\{1,2,3\}$

$$
\begin{gather*}
J_{\alpha}^{2}=-\mathrm{id}, \quad J_{\alpha} J_{\alpha+1}=-J_{\alpha+1} J_{\alpha}=J_{\alpha+2} \tag{2.12}\\
g\left(J_{\alpha} X, J_{\alpha} Y\right)=g(X, Y) \tag{2.13}
\end{gather*}
$$

for $X, Y \in \Gamma(T M)$, where the indices are taken from $\{1,2,3\}$ modulo 3 .
Then we call (M, E, g) an almost quaternionic Hermitian manifold, see [11].
For convenience, the above basis $\left\{J_{1}, J_{2}, J_{3}\right\}$ satisfying (2.12) and (2.13) is said to be a quaternionic Hermitian basis.

Let (M, E, g) be an almost quaternionic Hermitian manifold.
We call (M, E, g) a quaternionic Kähler manifold if given a point $p \in M$ with a neighborhood U, there exist 1-forms $\omega_{1}, \omega_{2}, \omega_{3}$ on U such that for any $\alpha \in\{1,2,3\}$,

$$
\nabla_{X} J_{\alpha}=\omega_{\alpha+2}(X) J_{\alpha+1}-\omega_{\alpha+1}(X) J_{\alpha+2}
$$

for $X \in \Gamma(T M)$, where the indices are taken from $\{1,2,3\}$ modulo 3 , see [11].
If there exists a global parallel quaternionic Hermitian basis $\left\{J_{1}, J_{2}, J_{3}\right\}$ of sections of E on M (i.e., $\nabla J_{\alpha}=0$ for $\alpha \in\{1,2,3\}$, where ∇ is the Levi-Civita connection of g), then (M, E, g) is said to be a hyperkähler manifold. Furthermore, we call $\left(J_{1}, J_{2}, J_{3}, g\right)$ a hyperkähler structure on M and g a hyperkähler metric, see [4].

Now, we recall the notions of almost h-slant submersions, almost h-semi-invariant submersions, and almost h-semi-slant submersions.

Let $\left(M, E, g_{M}\right)$ be an almost quaternionic Hermitian manifold and $\left(N, g_{N}\right)$ a Riemannian manifold.

A Riemannian submersion $F:\left(M, E, g_{M}\right) \rightarrow\left(N, g_{N}\right)$ is said to be an almost h-slant submersion if given a point $p \in M$ with a neighborhood U, there exists a quaternionic Hermitian basis $\{I, J, K\}$ of sections of E on U such that for $R \in$ $\{I, J, K\}$ the angle $\theta_{R}(X)$ between $R X$ and the space $\operatorname{ker}\left(F_{*}\right)_{q}$ is constant for nonzero $X \in \operatorname{ker}\left(F_{*}\right)_{q}$ and $q \in U$, see [19].

A Riemannian submersion $F:\left(M, E, g_{M}\right) \rightarrow\left(N, g_{N}\right)$ is called an almost h-semiinvariant submersion if given a point $p \in M$ with a neighborhood U, there exists a quaternionic Hermitian basis $\{I, J, K\}$ of sections of E on U such that for each $R \in\{I, J, K\}$ there is a distribution $\mathcal{D}_{1}^{R} \subset \operatorname{ker} F_{*}$ on U such that

$$
\operatorname{ker} F_{*}=\mathcal{D}_{1}^{R} \oplus \mathcal{D}_{2}^{R}, \quad R\left(\mathcal{D}_{1}^{R}\right)=\mathcal{D}_{1}^{R}, \quad R\left(\mathcal{D}_{2}^{R}\right) \subset\left(\operatorname{ker} F_{*}\right)^{\perp}
$$

where \mathcal{D}_{2}^{R} is the orthogonal complement of \mathcal{D}_{1}^{R} in $\operatorname{ker} F_{*}$, see [18].
A Riemannian submersion $F:\left(M, E, g_{M}\right) \rightarrow\left(N, g_{N}\right)$ is called an almost h-semislant submersions if given a point $p \in M$ with a neighborhood U, there exists a quaternionic Hermitian basis $\{I, J, K\}$ of sections of E on U such that for each $R \in\{I, J, K\}$ there is a distribution $\mathcal{D}_{1}^{R} \subset \operatorname{ker} F_{*}$ on U such that

$$
\operatorname{ker} F_{*}=\mathcal{D}_{1}^{R} \oplus \mathcal{D}_{2}^{R}, \quad R\left(\mathcal{D}_{1}^{R}\right)=\mathcal{D}_{1}^{R},
$$

and the angle $\theta_{R}=\theta_{R}(X)$ between $R X$ and the space $\left(\mathcal{D}_{2}^{R}\right)_{q}$ is constant for nonzero $X \in\left(\mathcal{D}_{2}^{R}\right)_{q}$ and $q \in U$, where \mathcal{D}_{2}^{R} is the orthogonal complement of \mathcal{D}_{1}^{R} in $\operatorname{ker} F_{*}$, see [20].

Throughout this paper, we will use the above notation.

3. H-anti-Invariant submersions

In this section, we introduce the notions of h-anti-invariant submersions and h Lagrangian submersions from almost quaternionic Hermitian manifolds onto Riemannian manifolds and investigate their properties.

Definition 3.1. Let $\left(M, E, g_{M}\right)$ be an almost quaternionic Hermitian manifold and $\left(N, g_{N}\right)$ a Riemannian manifold. Let $F:\left(M, E, g_{M}\right) \rightarrow\left(N, g_{N}\right)$ be a Riemannian submersion. We call the map F an h-anti-invariant submersion if given a point $p \in M$ with a neighborhood U, there exists a quaternionic Hermitian basis $\{I, J, K\}$ of sections of E on U such that $R\left(\operatorname{ker} F_{*}\right) \subset\left(\operatorname{ker} F_{*}\right)^{\perp}$ for $R \in\{I, J, K\}$.

We call such a basis $\{I, J, K\}$ an h-anti-invariant basis.
Remark 3.2. As we see, an h-anti-invariant submersion is one of the particular cases of an almost h-slant submersion, an almost h-semi-invariant submersion, and an almost h-semi-slant submersion.

Remark 3.3. Let F be an h-anti-invariant submersion from an almost quaternionic Hermitian manifold (M, E, g_{M}) onto a Riemannian manifold (N, g_{N}). Then there does not exist a map F such that $\operatorname{dim}\left(\operatorname{ker} F_{*}\right)=\operatorname{dim}\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$. If it did, then
given a local quaternionic Hermitian basis $\{I, J, K\}$ of E with $R\left(\operatorname{ker} F_{*}\right) \subset\left(\operatorname{ker} F_{*}\right)^{\perp}$ for $R \in\{I, J, K\}$, we should have

$$
R\left(\operatorname{ker} F_{*}\right)=\left(\operatorname{ker} F_{*}\right)^{\perp} \quad \text { for } R \in\{I, J, K\}
$$

so that

$$
K\left(\operatorname{ker} F_{*}\right)=I J\left(\operatorname{ker} F_{*}\right)=I\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)=\left(\operatorname{ker} F_{*}\right),
$$

contradiction!
Due to Remark 3.3, we need to define another type of such a map.
Definition 3.4. Let $\left(M, E, g_{M}\right)$ be an almost quaternionic Hermitian manifold and $\left(N, g_{N}\right)$ a Riemannian manifold. Let $F:\left(M, E, g_{M}\right) \rightarrow\left(N, g_{N}\right)$ be a Riemannian submersion. We call the map F a h-Lagrangian submersion if given a point $p \in M$ with a neighborhood U, there exists a quaternionic Hermitian basis $\{I, J, K\}$ of sections of E on U such that $I\left(\operatorname{ker} F_{*}\right)=\left(\operatorname{ker} F_{*}\right)^{\perp}, J\left(\operatorname{ker} F_{*}\right)=\operatorname{ker} F_{*}$, and $K\left(\operatorname{ker} F_{*}\right)=\left(\operatorname{ker} F_{*}\right)^{\perp}$.

We call such a basis $\{I, J, K\}$ an h-Lagrangian basis.
Remark 3.5. (a) It is easy to check that $J\left(\operatorname{ker} F_{*}\right)=\operatorname{ker} F_{*}$ implies $J\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)=$ $\left(\operatorname{ker} F_{*}\right)^{\perp}$.
(b) Let F be a Riemannian submersion from an almost quaternionic Hermitian manifold $\left(M, E, g_{M}\right)$ onto a Riemannian manifold $\left(N, g_{N}\right)$ such that $\operatorname{dim}\left(\operatorname{ker} F_{*}\right)=$ $\operatorname{dim}\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$. Then there does not exist a map F that for some local quaternionic Hermitian basis $\{I, J, K\}$ of E we have

$$
I\left(\operatorname{ker} F_{*}\right)=\operatorname{ker} F_{*}, \quad J\left(\operatorname{ker} F_{*}\right)=\operatorname{ker} F_{*}, \quad K\left(\operatorname{ker} F_{*}\right)=\left(\operatorname{ker} F_{*}\right)^{\perp} .
$$

If it did, then $K\left(\operatorname{ker} F_{*}\right)=I J\left(\operatorname{ker} F_{*}\right)=I\left(\operatorname{ker} F_{*}\right)=\operatorname{ker} F_{*}$, contradiction!
Now, we give some examples. Note that given a Euclidean space $\mathbb{R}^{4 m}$ with coordinates $\left(x_{1}, x_{2}, \ldots, x_{4 m}\right)$, we can canonically choose complex structures I, J, K on $\mathbb{R}^{4 m}$ as follows:

$$
\begin{array}{ll}
I\left(\frac{\partial}{\partial x_{4 k+1}}\right)=\frac{\partial}{\partial x_{4 k+2}}, & I\left(\frac{\partial}{\partial x_{4 k+2}}\right)=-\frac{\partial}{\partial x_{4 k+1}}, \\
I\left(\frac{\partial}{\partial x_{4 k+4}}\right)=-\frac{\partial}{\partial x_{4 k+3}}, & \left.J\left(\frac{\partial}{\partial x_{4 k+3}}\right)=\frac{\partial}{\partial x_{4 k+4}}\right)=\frac{\partial}{\partial x_{4 k+3}}, \\
J\left(\frac{\partial}{\partial x_{4 k+3}}\right)=-\frac{\partial}{\partial x_{4 k+1}}, & J\left(\frac{\partial}{\partial x_{4 k+2}}\right)=-\frac{\partial}{\partial x_{4 k+4}} \\
K\left(\frac{\partial}{\partial x_{4 k+2}}\right)=\frac{\partial}{\partial x_{4 k+2}}, & K\left(\frac{\partial}{\partial x_{4 k+1}}\right)=\frac{\partial}{\partial x_{4 k+4}}, \\
\partial\left(\frac{\partial}{\partial x_{4 k+3}}\right)=-\frac{\partial}{\partial x_{4 k+2}}, & K\left(\frac{\partial}{\partial x_{4 k+4}}\right)=-\frac{\partial}{\partial x_{4 k+1}}
\end{array}
$$

for $k \in\{0,1, \ldots, m-1\}$.

Then we easily check that $(I, J, K,\langle\rangle$,$) is a hyperkähler structure on \mathbb{R}^{4 m}$, where \langle,$\rangle denotes the Euclidean metric on \mathbb{R}^{4 m}$.

Example 3.6. Define a map $F: \mathbb{R}^{12} \rightarrow \mathbb{R}^{9}$ by

$$
F\left(x_{1}, \ldots, x_{12}\right)=\left(x_{10}, x_{11}, x_{12}, x_{4}, x_{3}, x_{2}, x_{8}, x_{6}, x_{7}\right)
$$

Then the map F is an h-anti-invariant submersion such that

$$
\operatorname{ker} F_{*}=\left\langle\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{5}}, \frac{\partial}{\partial x_{9}}\right\rangle
$$

$$
\left(\operatorname{ker} F_{*}\right)^{\perp}=\left\langle\frac{\partial}{\partial x_{2}}, \frac{\partial}{\partial x_{3}}, \frac{\partial}{\partial x_{4}}, \frac{\partial}{\partial x_{6}}, \frac{\partial}{\partial x_{7}}, \frac{\partial}{\partial x_{8}}, \frac{\partial}{\partial x_{10}}, \frac{\partial}{\partial x_{11}}, \frac{\partial}{\partial x_{12}}\right\rangle
$$

$$
I\left(\frac{\partial}{\partial x_{1}}\right)=\frac{\partial}{\partial x_{2}}, \quad I\left(\frac{\partial}{\partial x_{5}}\right)=\frac{\partial}{\partial x_{6}}, \quad I\left(\frac{\partial}{\partial x_{9}}\right)=\frac{\partial}{\partial x_{10}}
$$

$$
J\left(\frac{\partial}{\partial x_{1}}\right)=\frac{\partial}{\partial x_{3}}, \quad J\left(\frac{\partial}{\partial x_{5}}\right)=\frac{\partial}{\partial x_{7}}, \quad J\left(\frac{\partial}{\partial x_{9}}\right)=\frac{\partial}{\partial x_{11}}
$$

$$
K\left(\frac{\partial}{\partial x_{1}}\right)=\frac{\partial}{\partial x_{4}}, \quad K\left(\frac{\partial}{\partial x_{5}}\right)=\frac{\partial}{\partial x_{8}}, \quad K\left(\frac{\partial}{\partial x_{9}}\right)=\frac{\partial}{\partial x_{12}}
$$

Example 3.7. Define a map $F: \mathbb{R}^{4} \rightarrow \mathbb{R}^{2}$ by

$$
F\left(x_{1}, \ldots, x_{4}\right)=\left(\frac{x_{2}+x_{3}}{\sqrt{2}}, \frac{x_{1}+x_{4}}{\sqrt{2}}\right) .
$$

Then the map F is an h-Lagrangian submersion such that

$$
\begin{gathered}
\operatorname{ker} F_{*}=\left\langle V_{1}=\frac{\partial}{\partial x_{2}}-\frac{\partial}{\partial x_{3}}, V_{2}=\frac{\partial}{\partial x_{1}}-\frac{\partial}{\partial x_{4}}\right\rangle, \\
\left(\operatorname{ker} F_{*}\right)^{\perp}=\left\langle X_{1}=\frac{\partial}{\partial x_{2}}+\frac{\partial}{\partial x_{3}}, X_{2}=\frac{\partial}{\partial x_{1}}+\frac{\partial}{\partial x_{4}}\right\rangle, \\
I\left(V_{1}\right)=-X_{2}, \quad I\left(V_{2}\right)=X_{1}, \\
J\left(V_{1}\right)=V_{2}, \quad J\left(V_{2}\right)=-V_{1} \\
K\left(V_{1}\right)=X_{1}, \quad K\left(V_{2}\right)=X_{2}
\end{gathered}
$$

Let F be an h-anti-invariant submersion (or an h-Lagrangian submersion) from an almost quaternionic Hermitian manifold (M, E, g_{M}) onto a Riemannian manifold $\left(N, g_{N}\right)$. Given a point $p \in M$ with a neighborhood U, we have an h-anti-invariant basis (or an h-Lagrangian basis, respectively) $\{I, J, K\}$ of sections of E on U.

Then given $X \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$ and $R \in\{I, J, K\}$, we write

$$
\begin{equation*}
R X=B_{R} X+C_{R} X \tag{3.1}
\end{equation*}
$$

where $B_{R} X \in \Gamma\left(\operatorname{ker} F_{*}\right)$ and $C_{R} X \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$.

If $F:\left(M, E, g_{M}\right) \rightarrow\left(N, g_{N}\right)$ is an h-anti-invariant submersion, then we get

$$
\begin{equation*}
\left(\operatorname{ker} F_{*}\right)^{\perp}=R\left(\operatorname{ker} F_{*}\right) \oplus \mu_{R} \quad \text { for } R \in\{I, J, K\} \tag{3.2}
\end{equation*}
$$

Then it is easy to check that μ_{R} is R-invariant for $R \in\{I, J, K\}$.
Given $X \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$ and $R \in\{I, J, K\}$, we have

$$
\begin{equation*}
X=P_{R} X+Q_{R} X \tag{3.3}
\end{equation*}
$$

where $P_{R} X \in \Gamma\left(R\left(\operatorname{ker} F_{*}\right)\right)$ and $Q_{R} X \in \Gamma\left(\mu_{R}\right)$.
Furthermore, given $R \in\{I, J, K\}$, we obtain

$$
\begin{equation*}
C_{R} X \in \Gamma\left(\mu_{R}\right) \quad \text { for } X \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right) \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
g_{M}\left(C_{R} X, R V\right)=0 \quad \text { for } V \in \Gamma\left(\operatorname{ker} F_{*}\right) . \tag{3.5}
\end{equation*}
$$

Then it is easy to have

Lemma 3.8. Let F be an h-anti-invariant submersion from a hyperkähler manifold (M, I, J, K, g_{M}) onto a Riemannian manifold $\left(N, g_{N}\right)$ such that (I, J, K) is an h-anti-invariant basis. Then we get

$$
\begin{align*}
\mathcal{T}_{V} R W & =B_{R} \mathcal{T}_{V} W \tag{1}\\
\mathcal{H} \nabla_{V} R W & =C_{R} \mathcal{T}_{V} W+R \widehat{\nabla}_{V} W
\end{align*}
$$

for $V, W \in \Gamma\left(\operatorname{ker} F_{*}\right)$ and $R \in\{I, J, K\}$;

$$
\begin{align*}
\mathcal{A}_{X} C_{R} Y+\mathcal{V} \nabla_{X} B_{R} Y & =B_{R} \mathcal{H} \nabla_{X} Y \tag{2}\\
\mathcal{H} \nabla_{X} C_{R} Y+\mathcal{A}_{X} B_{R} Y & =R \mathcal{A}_{X} Y+C_{R} \mathcal{H} \nabla_{X} Y
\end{align*}
$$

for $X, Y \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$ and $R \in\{I, J, K\}$;
(3)

$$
\begin{aligned}
\mathcal{A}_{X} R V & =B_{R} \mathcal{A}_{X} V \\
\mathcal{H} \nabla_{X} R V & =C_{R} \mathcal{A}_{X} V+R \mathcal{V} \nabla_{X} V
\end{aligned}
$$

for $V \in \Gamma\left(\operatorname{ker} F_{*}\right), X \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$, and $R \in\{I, J, K\}$.

Theorem 3.9. Let F be an h-anti-invariant submersion from a hyperkähler manifold (M, I, J, K, g_{M}) onto a Riemannian manifold $\left(N, g_{N}\right)$ such that (I, J, K) is an h-anti-invariant basis. Then the following conditions are equivalent:
(a) the distribution $\left(\operatorname{ker} F_{*}\right)^{\perp}$ is integrable.
(b)

$$
g_{M}\left(\mathcal{A}_{X} B_{I} Y-\mathcal{A}_{Y} B_{I} X, I V\right)=g_{M}\left(C_{I} Y, I \mathcal{A}_{X} V\right)-g_{M}\left(C_{I} X, I \mathcal{A}_{Y} V\right)
$$

for $V \in \Gamma\left(\operatorname{ker} F_{*}\right)$ and $X, Y \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$.
(c)

$$
g_{M}\left(\mathcal{A}_{X} B_{J} Y-\mathcal{A}_{Y} B_{J} X, J V\right)=g_{M}\left(C_{J} Y, J \mathcal{A}_{X} V\right)-g_{M}\left(C_{J} X, J \mathcal{A}_{Y} V\right)
$$

for $V \in \Gamma\left(\operatorname{ker} F_{*}\right)$ and $X, Y \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$.
(d)
$g_{M}\left(\mathcal{A}_{X} B_{K} Y-\mathcal{A}_{Y} B_{K} X, K V\right)=g_{M}\left(C_{K} Y, K \mathcal{A}_{X} V\right)-g_{M}\left(C_{K} X, K \mathcal{A}_{Y} V\right)$
for $V \in \Gamma\left(\operatorname{ker} F_{*}\right)$ and $X, Y \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$.
Proof. Given $V \in \Gamma\left(\operatorname{ker} F_{*}\right), X, Y \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$, and $R \in\{I, J, K\}$, using (3.5) we get

$$
\begin{aligned}
g_{M} & ([X, Y], V)=g_{M}\left(\nabla_{X} R Y-\nabla_{Y} R X, R V\right) \\
& =g_{M}\left(\nabla_{X} B_{R} Y+\nabla_{X} C_{R} Y-\nabla_{Y} B_{R} X-\nabla_{Y} C_{R} X, R V\right) \\
& =g_{M}\left(\mathcal{A}_{X} B_{R} Y-\mathcal{A}_{Y} B_{R} X, R V\right)-g_{M}\left(C_{R} Y, \nabla_{X} R V\right)+g_{M}\left(C_{R} X, \nabla_{Y} R V\right) \\
& =g_{M}\left(\mathcal{A}_{X} B_{R} Y-\mathcal{A}_{Y} B_{R} X, R V\right)-g_{M}\left(C_{R} Y, R \mathcal{A}_{X} V\right)+g_{M}\left(C_{R} X, R \mathcal{A}_{Y} V\right) .
\end{aligned}
$$

Hence,

$$
(\mathrm{a}) \Leftrightarrow(\mathrm{b}), \quad(\mathrm{a}) \Leftrightarrow(\mathrm{c}), \quad(\mathrm{a}) \Leftrightarrow(\mathrm{d}) .
$$

Therefore, the result follows.
Lemma 3.10. Let F be an h-Lagrangian submersion from a hyperkähler manifold $\left(M, I, J, K, g_{M}\right)$ onto a Riemannian manifold $\left(N, g_{N}\right)$ such that (I, J, K) is an hLagrangian basis. Then the following conditions are equivalent:
(a) The distribution $\left(\operatorname{ker} F_{*}\right)^{\perp}$ is integrable.
(b) $\mathcal{A}_{X} I Y=\mathcal{A}_{Y} I X$ for $X, Y \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$.
(c) $\mathcal{A}_{X} K Y=\mathcal{A}_{Y} K X$ for $X, Y \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$.
(d) $\mathcal{A}_{X} J Y=\mathcal{A}_{Y} J X$ for $X, Y \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$.

Proof. By the proof of Theorem 3.9, we get (a) $\Leftrightarrow(\mathrm{b})$ and $(\mathrm{a}) \Leftrightarrow(\mathrm{c})$.
Given $V \in \Gamma\left(\operatorname{ker} F_{*}\right)$ and $X, Y \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$, since $J\left(\operatorname{ker} F_{*}\right)=\operatorname{ker} F_{*}$, we obtain

$$
\begin{aligned}
g_{M}([X, Y], J V) & =-g_{M}\left(\nabla_{X} J Y-\nabla_{Y} J X, V\right) \\
& =g_{M}\left(\mathcal{A}_{Y} J X-\mathcal{A}_{X} J Y, V\right),
\end{aligned}
$$

which implies (a) \Leftrightarrow (d).
Therefore, the result follows.

We consider equivalent conditions for distributions to be totally geodesic.

Theorem 3.11. Let F be an h-anti-invariant submersion from a hyperkähler manifold (M, I, J, K, g_{M}) onto a Riemannian manifold (N, g_{N}) such that (I, J, K) is an h-anti-invariant basis. Then the following conditions are equivalent:
(a) The distribution $\left(\operatorname{ker} F_{*}\right)^{\perp}$ defines a totally geodesic foliation on M.

$$
\begin{equation*}
g_{M}\left(\mathcal{A}_{X} B_{I} Y, I V\right)=g_{M}\left(C_{I} Y, I \mathcal{A}_{X} V\right) \tag{b}
\end{equation*}
$$

for $V \in \Gamma\left(\operatorname{ker} F_{*}\right)$ and $X, Y \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$.
(c)

$$
g_{M}\left(\mathcal{A}_{X} B_{J} Y, J V\right)=g_{M}\left(C_{J} Y, J \mathcal{A}_{X} V\right)
$$

for $V \in \Gamma\left(\operatorname{ker} F_{*}\right)$ and $X, Y \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$.
(d)

$$
g_{M}\left(\mathcal{A}_{X} B_{K} Y, K V\right)=g_{M}\left(C_{K} Y, K \mathcal{A}_{X} V\right)
$$

for $V \in \Gamma\left(\operatorname{ker} F_{*}\right)$ and $X, Y \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$.
Proof. Given $V \in \Gamma\left(\operatorname{ker} F_{*}\right), X, Y \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$, and $R \in\{I, J, K\}$, using (3.5) we have

$$
\begin{aligned}
g_{M}\left(\nabla_{X} Y, V\right) & =g_{M}\left(\nabla_{X} B_{R} Y+\nabla_{X} C_{R} Y, R V\right) \\
& =g_{M}\left(\mathcal{A}_{X} B_{R} Y, R V\right)-g_{M}\left(C_{R} Y, \nabla_{X} R V\right) \\
& =g_{M}\left(\mathcal{A}_{X} B_{R} Y, R V\right)-g_{M}\left(C_{R} Y, R \mathcal{A}_{X} V\right),
\end{aligned}
$$

which implies (a) $\Leftrightarrow(\mathrm{b}),(\mathrm{a}) \Leftrightarrow(\mathrm{c}),(\mathrm{a}) \Leftrightarrow(\mathrm{d})$.
Therefore, the result follows.
Lemma 3.12. Let F be an h-Lagrangian submersion from a hyperkähler manifold $\left(M, I, J, K, g_{M}\right)$ onto a Riemannian manifold $\left(N, g_{N}\right)$ such that (I, J, K) is an h Lagrangian basis. Then the following conditions are equivalent:
(a) The distribution $\left(\operatorname{ker} F_{*}\right)^{\perp}$ defines a totally geodesic foliation on M.
(b) $\mathcal{A}_{X} I Y=0$ for $X, Y \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$.
(c) $\mathcal{A}_{X} K Y=0$ for $X, Y \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$.
(d) $\mathcal{A}_{X} J Y=0$ for $X, Y \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$.

Proof. By the proof of Theorem 3.11, we get $(\mathrm{a}) \Leftrightarrow(\mathrm{b})$ and $(\mathrm{a}) \Leftrightarrow(\mathrm{c})$.
Given $V \in \Gamma\left(\operatorname{ker} F_{*}\right)$ and $X, Y \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$, we obtain

$$
g_{M}\left(\nabla_{X} Y, J V\right)=-g_{M}\left(\nabla_{X} J Y, V\right)=-g_{M}\left(\mathcal{A}_{X} J Y, V\right),
$$

which implies (a) \Leftrightarrow (d).
Therefore, the result follows.

Theorem 3.13. Let F be an h-anti-invariant submersion from a hyperkähler manifold (M, I, J, K, g_{M}) onto a Riemannian manifold (N, g_{N}) such that (I, J, K) is an h-anti-invariant basis. Then the following conditions are equivalent:
(a) The distribution $\operatorname{ker} F_{*}$ defines a totally geodesic foliation on M.
(b)

$$
\mathcal{T}_{V} B_{I} X+\mathcal{A}_{C_{I} X} V \in \Gamma\left(\mu_{I}\right)
$$

for $V \in \Gamma\left(\operatorname{ker} F_{*}\right)$ and $X \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$.
(c)

$$
\mathcal{T}_{V} B_{J} X+\mathcal{A}_{C_{J} X} V \in \Gamma\left(\mu_{J}\right)
$$

for $V \in \Gamma\left(\operatorname{ker} F_{*}\right)$ and $X \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$.
(d)

$$
\mathcal{T}_{V} B_{K} X+\mathcal{A}_{C_{K} X} V \in \Gamma\left(\mu_{K}\right)
$$

for $V \in \Gamma\left(\operatorname{ker} F_{*}\right)$ and $X \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$.
Proof. Given $V, W \in \Gamma\left(\operatorname{ker} F_{*}\right), X \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$, and $R \in\{I, J, K\}$, using (3.5) we get

$$
\begin{aligned}
g_{M}\left(\nabla_{V} W, X\right) & =g_{M}\left(\nabla_{V} R W, R X\right) \\
& =-g_{M}\left(R W, \nabla_{V} B_{R} X+\nabla_{V} C_{R} X\right) \\
& =-g_{M}\left(R W, \mathcal{T}_{V} B_{R} X\right)-g_{M}\left(R W, \nabla_{V} C_{R} X\right) .
\end{aligned}
$$

However,

$$
\begin{aligned}
g_{M}\left(R W, \nabla_{V} C_{R} X\right) & =g_{N}\left(F_{*} R W, F_{*} \nabla_{V} C_{R} X\right) \quad\left(\text { since } R W \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)\right) \\
& =-g_{N}\left(F_{*} R W,\left(\nabla F_{*}\right)\left(V, C_{R} X\right)\right) \\
& =-g_{N}\left(F_{*} R W,\left(\nabla F_{*}\right)\left(C_{R} X, V\right)\right) \quad(\text { by }(2.10)) \\
& =g_{M}\left(R W, \nabla_{C_{R} X} V\right) \\
& =g_{M}\left(R W, \mathcal{A}_{C_{R} X} V\right) .
\end{aligned}
$$

Hence,

$$
g_{M}\left(\nabla_{V} W, X\right)=-g_{M}\left(R W, \mathcal{T}_{V} B_{R} X+\mathcal{A}_{C_{R} X} V\right)
$$

which implies (a) $\Leftrightarrow(\mathrm{b}),(\mathrm{a}) \Leftrightarrow(\mathrm{c}),(\mathrm{a}) \Leftrightarrow(\mathrm{d})$.
Therefore, we obtain the result.

Lemma 3.14. Let F be an h-Lagrangian submersion from a hyperkähler manifold $\left(M, I, J, K, g_{M}\right)$ onto a Riemannian manifold $\left(N, g_{N}\right)$ such that (I, J, K) is an h Lagrangian basis. Then the following conditions are equivalent:
(a) The distribution ker F_{*} defines a totally geodesic foliation on M.
(b) $\mathcal{T}_{V} I X=0$ for $X \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$ and $V \in \Gamma\left(\operatorname{ker} F_{*}\right)$.
(c) $\mathcal{T}_{V} K X=0$ for $X \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$ and $V \in \Gamma\left(\operatorname{ker} F_{*}\right)$.
(d) $\mathcal{T}_{V} J X=0$ for $X \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$ and $V \in \Gamma\left(\operatorname{ker} F_{*}\right)$.

Proof. By the proof of Theorem 3.13, we have (a) $\Leftrightarrow(\mathrm{b})$ and $(\mathrm{a}) \Leftrightarrow(\mathrm{c})$.
Given $V, W \in \Gamma\left(\operatorname{ker} F_{*}\right)$ and $X \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$, we get

$$
\begin{aligned}
g_{M}\left(\nabla_{V} W, J X\right) & =-g_{M}\left(W, \nabla_{V} J X\right) \\
& =-g_{M}\left(W, \mathcal{T}_{V} J X\right) \quad\left(\text { since } J X \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)\right),
\end{aligned}
$$

which implies $(\mathrm{a}) \Leftrightarrow(\mathrm{d})$.
Therefore, the result follows.
Now, we consider equivalent conditions for such maps to be either totally geodesic or harmonic.

Theorem 3.15. Let F be an h-anti-invariant submersion from a hyperkähler manifold (M, I, J, K, g_{M}) onto a Riemannian manifold (N, g_{N}) such that (I, J, K) is an h-anti-invariant basis. Then the following conditions are equivalent:
(a) The map F is a totally geodesic map.
(b)

$$
\mathcal{A}_{X} I V=0, \quad Q_{I} \mathcal{H} \nabla_{X} I V=0, \quad \mathcal{T}_{V} I W=0, \quad Q_{I} \mathcal{H} \nabla_{V} I W=0
$$

for $V, W \in \Gamma\left(\operatorname{ker} F_{*}\right)$ and $X \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$.
(c)

$$
\mathcal{A}_{X} J V=0, \quad Q_{J} \mathcal{H} \nabla_{X} J V=0, \quad \mathcal{T}_{V} J W=0, \quad Q_{J} \mathcal{H} \nabla_{V} J W=0
$$

for $V, W \in \Gamma\left(\operatorname{ker} F_{*}\right)$ and $X \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$.
(d)

$$
\mathcal{A}_{X} K V=0, \quad Q_{K} \mathcal{H} \nabla_{X} K V=0, \quad \mathcal{T}_{V} K W=0, \quad Q_{K} \mathcal{H} \nabla_{V} K W=0
$$

for $V, W \in \Gamma\left(\operatorname{ker} F_{*}\right)$ and $X \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$.
Proof. By (2.11) we have $\left(\nabla F_{*}\right)(X, Y)=0$ for $X, Y \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$.
Given $V, W \in \Gamma\left(\operatorname{ker} F_{*}\right), X \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$, and $R \in\{I, J, K\}$, by using (3.2) and (3.3) we obtain

$$
\begin{aligned}
\left(\nabla F_{*}\right)(X, V) & =-F_{*}\left(\nabla_{X} V\right)=F_{*}\left(R \nabla_{X} R V\right) \\
& =F_{*}\left(R\left(\mathcal{A}_{X} R V+\mathcal{H} \nabla_{X} R V\right)\right)=0
\end{aligned}
$$

$$
\begin{aligned}
& \Leftrightarrow R\left(\mathcal{A}_{X} R V+Q_{R} \mathcal{H} \nabla_{X} R V\right)=0 \Leftrightarrow \mathcal{A}_{X} R V=0, Q_{R} \mathcal{H} \nabla_{X} R V=0 \text { and } \\
& \qquad \begin{aligned}
\left(\nabla F_{*}\right)(V, W) & =-F_{*}\left(\nabla_{V} W\right)=F_{*}\left(R \nabla_{V} R W\right) \\
& =F_{*}\left(R\left(\mathcal{T}_{V} R W+\mathcal{H} \nabla_{V} R W\right)\right)=0
\end{aligned} \\
& \Leftrightarrow R\left(\mathcal{T}_{V} R W+Q_{R} \mathcal{H} \nabla_{V} R W\right)=0 \Leftrightarrow \mathcal{T}_{V} R W=0, Q_{R} \mathcal{H} \nabla_{V} R W=0
\end{aligned} \begin{aligned}
& \text { Hence, } \\
& \qquad \begin{array}{l}
\text { (a) } \Leftrightarrow(\text { (b) }, \quad \text { (a) } \Leftrightarrow(\text { c) }) \quad \text { (a) } \Leftrightarrow(\text { d })
\end{array}
\end{aligned}
$$

Therefore, the result follows.

Lemma 3.16. Let F be an h-Lagrangian submersion from a hyperkähler manifold $\left(M, I, J, K, g_{M}\right)$ onto a Riemannian manifold $\left(N, g_{N}\right)$ such that (I, J, K) is an h Lagrangian basis. Then the following conditions are equivalent:
(a) The map F is a totally geodesic map.
(b) $\mathcal{A}_{X} I V=0$ and $\mathcal{T}_{V} I W=0$ for $V, W \in \Gamma\left(\operatorname{ker} F_{*}\right)$ and $X \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$.
(c) $\mathcal{A}_{X} K V=0$ and $\mathcal{T}_{V} K W=0$ for $V, W \in \Gamma\left(\operatorname{ker} F_{*}\right)$ and $X \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$.
(d) $\mathcal{A}_{X} J V=0$ and $\mathcal{T}_{V} J W=0$ for $V, W \in \Gamma\left(\operatorname{ker} F_{*}\right)$ and $X \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$.

Proof. By the proof of Theorem 3.15, we have (a) $\Leftrightarrow(\mathrm{b})$ and (a) $\Leftrightarrow(\mathrm{c})$.
Given $V, W \in \Gamma\left(\operatorname{ker} F_{*}\right)$ and $X \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$, we get

$$
\begin{aligned}
\left(\nabla F_{*}\right)(X, V) & =-F_{*}\left(\nabla_{X} V\right)=F_{*}\left(J \nabla_{X} J V\right) \\
& =F_{*}\left(J\left(\mathcal{A}_{X} J V+\mathcal{V} \nabla_{X} J V\right)\right)=F_{*} J \mathcal{A}_{X} J V=0
\end{aligned}
$$

$\Leftrightarrow \mathcal{A}_{X} J V=0$ and

$$
\begin{aligned}
\left(\nabla F_{*}\right)(V, W) & =-F_{*}\left(\nabla_{V} W\right)=F_{*}\left(J \nabla_{V} J W\right) \\
& =F_{*}\left(J\left(\mathcal{T}_{V} J W+\mathcal{V} \nabla_{V} J W\right)\right) \\
& =F_{*} J \mathcal{T}_{V} J W=0
\end{aligned}
$$

$\Leftrightarrow \mathcal{T}_{V} J W=0$, which implies (a) $\Leftrightarrow(\mathrm{d})$.
Therefore, we obtain the result.

Theorem 3.17. Let F be an h-anti-invariant submersion from a hyperkähler manifold (M, I, J, K, g_{M}) onto a Riemannian manifold (N, g_{N}) such that (I, J, K) is an h-anti-invariant basis. Then the following conditions are equivalent:
(a) The map F is harmonic.
(b) $Q_{I}(\operatorname{trace}(\mathcal{T}))=0$ on $\operatorname{ker} F_{*}$ and $\operatorname{trace}\left(I \mathcal{T}_{V}\right)=0$ on $\operatorname{ker} F_{*}$ for $V \in \Gamma\left(\operatorname{ker} F_{*}\right)$.
(c) $Q_{J}(\operatorname{trace}(\mathcal{T}))=0$ on $\operatorname{ker} F_{*}$ and $\operatorname{trace}\left(J \mathcal{T}_{V}\right)=0$ on $\operatorname{ker} F_{*}$ for $V \in \Gamma\left(\operatorname{ker} F_{*}\right)$.
(d) $Q_{K}(\operatorname{trace}(\mathcal{T}))=0$ on $\operatorname{ker} F_{*}$ and $\operatorname{trace}\left(K \mathcal{T}_{V}\right)=0$ on $\operatorname{ker} F_{*}$ for $V \in \Gamma\left(\operatorname{ker} F_{*}\right)$.

Pro of. By (2.11) we know that the map F is harmonic if and only if $\sum_{i=1}^{m} \mathcal{T}_{e_{i}} e_{i}=0$ for any local orthonormal frame $\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$ of $\operatorname{ker} F_{*}$.

Given $V, W \in \Gamma\left(\operatorname{ker} F_{*}\right), R \in\{I, J, K\}$, and a local orthonormal frame $\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$ of ker F_{*}, using (3.2) and (3.3) we obtain

$$
\begin{aligned}
\mathcal{T}_{V} R W & =\mathcal{V} \nabla_{V} R W=\mathcal{V} R \nabla_{V} W \\
& =\mathcal{V} R\left(\mathcal{T}_{V} W+\mathcal{V} \nabla_{V} W\right)=\mathcal{V} R P_{R} \mathcal{T}_{V} W
\end{aligned}
$$

so that using (2.7) and (2.8) we get

$$
\begin{aligned}
g_{M}\left(\sum_{i=1}^{m} \mathcal{T}_{e_{i}} e_{i}, R V\right) & =\sum_{i=1}^{m} g_{M}\left(\mathcal{T}_{e_{i}} e_{i}, R V\right)=\sum_{i=1}^{m} g_{M}\left(P_{R} \mathcal{T}_{e_{i}} e_{i}, R V\right) \\
& =-\sum_{i=1}^{m} g_{M}\left(R P_{R} \mathcal{T}_{e_{i}} e_{i}, V\right)=-\sum_{i=1}^{m} g_{M}\left(\mathcal{V} R P_{R} \mathcal{T}_{e_{i}} e_{i}, V\right) \\
& =-\sum_{i=1}^{m} g_{M}\left(\mathcal{T}_{e_{i}} R e_{i}, V\right)=\sum_{i=1}^{m} g_{M}\left(R e_{i}, \mathcal{T}_{e_{i}} V\right) \\
& =\sum_{i=1}^{m} g_{M}\left(R e_{i}, \mathcal{T}_{V} e_{i}\right)=-\sum_{i=1}^{m} g_{M}\left(e_{i}, R \mathcal{T}_{V} e_{i}\right)=0
\end{aligned}
$$

$\Leftrightarrow \operatorname{trace}\left(R \mathcal{T}_{V}\right)=0$ for $V \in \Gamma\left(\operatorname{ker} F_{*}\right)$.
Hence,

$$
(\mathrm{a}) \Leftrightarrow(\mathrm{b}), \quad(\mathrm{a}) \Leftrightarrow(\mathrm{c}), \quad(\mathrm{a}) \Leftrightarrow(\mathrm{d}) .
$$

Therefore, the result follows.

Lemma 3.18. Let F be an h-Lagrangian submersion from a hyperkähler manifold $\left(M, I, J, K, g_{M}\right)$ onto a Riemannian manifold $\left(N, g_{N}\right)$ such that (I, J, K) is an h Lagrangian basis. Then the map F is harmonic.

Proof. Since $J\left(\operatorname{ker} F_{*}\right)=\operatorname{ker} F_{*}$, we can choose a local orthonormal frame $\left\{e_{1}, J e_{1}, \ldots, e_{k}, J e_{k}\right\}$ of $\operatorname{ker} F_{*}$.

Given $V, W \in \Gamma\left(\operatorname{ker} F_{*}\right)$, we have

$$
\begin{aligned}
\mathcal{T}_{V} J W & =\mathcal{H} \nabla_{V} J W=\mathcal{H} J \nabla_{V} W \\
& =\mathcal{H} J\left(\mathcal{T}_{V} W+\mathcal{V} \nabla_{V} W\right)=J \mathcal{T}_{V} W
\end{aligned}
$$

so that

$$
\begin{aligned}
\sum_{i=1}^{k}\left(\mathcal{T}_{e_{i}} e_{i}+\mathcal{T}_{J e_{i}} J e_{i}\right) & =\sum_{i=1}^{k}\left(\mathcal{T}_{e_{i}} e_{i}+J \mathcal{T}_{J_{e}} e_{i}\right)=\sum_{i=1}^{k}\left(\mathcal{T}_{e_{i}} e_{i}+J \mathcal{T}_{e_{i}} J e_{i}\right) \\
& =\sum_{i=1}^{k}\left(\mathcal{T}_{e_{i}} e_{i}+J^{2} \mathcal{T}_{e_{i}} e_{i}\right)=\sum_{i=1}^{k}\left(\mathcal{T}_{e_{i}} e_{i}-\mathcal{T}_{e_{i}} e_{i}\right)=0
\end{aligned}
$$

Therefore, the result follows.

4. Decomposition theorems

First of all, we recall some notions. Let (M, g) be a Riemannian manifold and L a foliation of M. Let ξ be the tangent bundle of L considered as a subbundle of the tangent bundle $T M$ of M.

We call L a totally umbilic foliation, see [21], of M if

$$
\begin{equation*}
h(X, Y)=g(X, Y) H \quad \text { for } X, Y \in \Gamma(\xi), \tag{4.1}
\end{equation*}
$$

where h is the second fundamental form of L in M and H is the mean curvature vector field of L in M.

The foliation L is said to be a spheric foliation, see [21], if it is a totally umbilic foliation and

$$
\begin{equation*}
\nabla_{X} H \in \Gamma(\xi) \quad \text { for } X \in \Gamma(\xi) \tag{4.2}
\end{equation*}
$$

where ∇ is the Levi-Civita connection of g.
We call L a totally geodesic foliation, see [21], of M if

$$
\begin{equation*}
\nabla_{X} Y \in \Gamma(\xi) \quad \text { for } X, Y \in \Gamma(\xi) \tag{4.3}
\end{equation*}
$$

Let $\left(M_{1}, g_{1}\right)$ and (M_{2}, g_{2}) be Riemannian manifolds, $f_{i}: M_{1} \times M_{2} \rightarrow \mathbb{R}$ a positive C^{∞}-function, and $\pi_{i}: M_{1} \times M_{2} \rightarrow M_{i}$ the canonical projection for $i=1,2$.

We call $M_{1} \times_{\left(f_{1}, f_{2}\right)} M_{2}$ a double-twisted product manifold, see [21], of $\left(M_{1}, g_{1}\right)$ and $\left(M_{2}, g_{2}\right)$ if it is the product manifold $M:=M_{1} \times M_{2}$ with the Riemannian metric g such that

$$
\begin{equation*}
g(X, Y)=f_{1}^{2} g_{1}\left(\pi_{1 *} X, \pi_{1 *} Y\right)+f_{2}^{2} g_{2}\left(\pi_{2 *} X, \pi_{2 *} Y\right) \quad \text { for } X, Y \in \Gamma(T M) \tag{4.4}
\end{equation*}
$$

We call $M_{1} \times{ }_{\left(f_{1}, f_{2}\right)} M_{2}$ nontrivial if neither f_{1} nor f_{2} are constant functions.

The Riemannian manifold $M_{1} \times{ }_{f} M_{2}$ is said to be a twisted product manifold, see [21], of $\left(M_{1}, g_{1}\right)$ and $\left(M_{2}, g_{2}\right)$ if $M_{1} \times_{f} M_{2}=M_{1} \times_{(1, f)} M_{2}$.

We call $M_{1} \times_{f} M_{2}$ nontrivial if f is not a constant function.
The twisted product manifold $M_{1} \times_{f} M_{2}$ is said to be a warped product manifold, see [21], of $\left(M_{1}, g_{1}\right)$ and $\left(M_{2}, g_{2}\right)$ if f depends only on the points of M_{1}. (i.e., $\left.f \in C^{\infty}\left(M_{1}, \mathbb{R}\right)\right)$

Let M_{1} and M_{2} be connected C^{∞}-manifolds and M the product manifold $M_{1} \times M_{2}$. Let $\pi_{i}: M \rightarrow M_{i}$ be the canonical projection for $i=1,2$. Let $\xi_{i}:=\operatorname{ker} \pi_{3-i_{*}}$ and let $P_{i}: T M \rightarrow \xi_{i}$ be the vector bundle projection such that $T M=\xi_{1} \oplus \xi_{2}$. And let L_{i} be the canonical foliation of M by the integral manifolds of ξ_{i} for $i=1,2$.

Proposition 4.1 ([21]). Let g be a Riemannian metric on the product manifold $M_{1} \times M_{2}$ and assume that the canonical foliations L_{1} and L_{2} intersect perpendicularly everywhere. Then g is a metric of
(a) a double-twisted product manifold $M_{1} \times{ }_{\left(f_{1}, f_{2}\right)} M_{2}$ if and only if L_{1} and L_{2} are totally umbilic foliations,
(b) a twisted product manifold $M_{1} \times{ }_{f} M_{2}$ if and only if L_{1} is a totally geodesic foliation and L_{2} is a totally umbilic foliation,
(c) a warped product manifold $M_{1} \times{ }_{f} M_{2}$ if and only if L_{1} is a totally geodesic foliation and L_{2} is a spheric foliation,
(d) a (usual) Riemannian product manifold $M_{1} \times M_{2}$ if and only if L_{1} and L_{2} are totally geodesic foliations.

Let F be a Riemannian submersion from a Riemannian manifold (M, g_{M}) onto a Riemannian manifold $\left(N, g_{N}\right)$ such that the distributions $\operatorname{ker} F_{*}$ and $\left(\operatorname{ker} F_{*}\right)^{\perp}$ are integrable. Then we denote by $M_{\operatorname{ker} F_{*}}$ and $M_{\left(\operatorname{ker} F_{*}\right)^{\perp}}$ the integral manifolds of $\operatorname{ker} F_{*}$ and $\left(\operatorname{ker} F_{*}\right)^{\perp}$, respectively. We also denote by H and H^{\perp} the mean curvature vector fields of $\operatorname{ker} F_{*}$ and $\left(\operatorname{ker} F_{*}\right)^{\perp}$, respectively, i.e., $H=m^{-1} \sum_{i=1}^{m} \mathcal{T}_{e_{i}} e_{i}$ and $H^{\perp}=n^{-1} \sum_{i=1}^{n} \mathcal{A}_{v_{i}} v_{i}$ for a local orthonormal frame $\left\{e_{1}, \ldots, e_{m}\right\}$ of $\operatorname{ker} F_{*}$ and a local orthonormal frame $\left\{v_{1}, \ldots, v_{n}\right\}$ of $\left(\operatorname{ker} F_{*}\right)^{\perp}$.

Using Proposition 4.1, Theorem 3.11, and Theorem 3.13, we get

Theorem 4.2. Let F be an h-anti-invariant submersion from a hyperkähler manifold $\left(M, I, J, K, g_{M}\right)$ onto a Riemannian manifold $\left(N, g_{N}\right)$ such that (I, J, K) is an h-anti-invariant basis. Then the following conditions are equivalent:
(a) $\left(M, g_{M}\right)$ is locally a Riemannian product manifold of the form $M_{\left(\operatorname{ker} F_{*}\right) \perp} \times$ $M_{\text {ker } F_{*}}$.
(b)

$$
g_{M}\left(\mathcal{A}_{X} B_{I} Y, I V\right)=g_{M}\left(C_{I} Y, I \mathcal{A}_{X} V\right) \quad \text { and } \quad \mathcal{T}_{V} B_{I} X+\mathcal{A}_{C_{I} X} V \in \Gamma\left(\mu_{I}\right)
$$

for $V \in \Gamma\left(\operatorname{ker} F_{*}\right)$ and $X, Y \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$.
(c)
$g_{M}\left(\mathcal{A}_{X} B_{J} Y, J V\right)=g_{M}\left(C_{J} Y, J \mathcal{A}_{X} V\right) \quad$ and $\quad \mathcal{T}_{V} B_{J} X+\mathcal{A}_{C_{J} X} V \in \Gamma\left(\mu_{J}\right)$
for $V \in \Gamma\left(\operatorname{ker} F_{*}\right)$ and $X, Y \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$.
(d)

$$
g_{M}\left(\mathcal{A}_{X} B_{K} Y, K V\right)=g_{M}\left(C_{K} Y, K \mathcal{A}_{X} V\right) \quad \text { and } \quad \mathcal{T}_{V} B_{K} X+\mathcal{A}_{C_{K} X} V \in \Gamma\left(\mu_{K}\right)
$$

for $V \in \Gamma\left(\operatorname{ker} F_{*}\right)$ and $X, Y \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$.
Using Proposition 4.1, Lemma 3.12, and Lemma 3.14, we obtain

Lemma 4.3. Let F be an h-Lagrangian submersion from a hyperkähler manifold $\left(M, I, J, K, g_{M}\right)$ onto a Riemannian manifold $\left(N, g_{N}\right)$ such that (I, J, K) is an hLagrangian basis. Then the following conditions are equivalent:
(a) $\left(M, g_{M}\right)$ is locally a Riemannian product manifold of the form $M_{\left(\operatorname{ker} F_{*}\right)^{\perp}} \times$ $M_{\text {ker } F_{*}}$.
(b)

$$
\mathcal{A}_{X} I Y=0 \quad \text { and } \quad \mathcal{T}_{V} I X=0
$$

for $X, Y \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$ and $V \in \Gamma\left(\operatorname{ker} F_{*}\right)$.
(c)

$$
\mathcal{A}_{X} K Y=0 \quad \text { and } \quad \mathcal{T}_{V} K X=0
$$

for $X, Y \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$ and $V \in \Gamma\left(\operatorname{ker} F_{*}\right)$.
(d)

$$
\mathcal{A}_{X} J Y=0 \quad \text { and } \quad \mathcal{T}_{V} J X=0
$$

for $X, Y \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$ and $V \in \Gamma\left(\operatorname{ker} F_{*}\right)$.
Now, we deal with the geometry of distributions $\operatorname{ker} F_{*}$ and $\left(\operatorname{ker} F_{*}\right)^{\perp}$.
Theorem 4.4. Let F be a Riemannian submersion from a Riemannian manifold $\left(M, g_{M}\right)$ onto a Riemannian manifold $\left(N, g_{N}\right)$. Assume that the distribution $\left(\operatorname{ker} F_{*}\right)^{\perp}$ defines a totally umbilic foliation on M. Then the distribution $\left(\operatorname{ker} F_{*}\right)^{\perp}$ also defines a totally geodesic foliation on M.

Proof. Given $X, Y \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$ and $V \in \Gamma\left(\operatorname{ker} F_{*}\right)$, we get

$$
\begin{equation*}
g_{M}\left(\nabla_{X} Y, V\right)=g_{M}\left(\mathcal{A}_{X} Y, V\right)=g_{M}(X, Y) g_{M}\left(H^{\perp}, V\right) \tag{4.5}
\end{equation*}
$$

and

$$
\begin{equation*}
g_{M}\left(\nabla_{X} Y, V\right)=-g_{M}\left(Y, \nabla_{X} V\right)=-g_{M}\left(Y, \mathcal{A}_{X} V\right) \tag{4.6}
\end{equation*}
$$

Comparing (4.5) and (4.6), we obtain $\mathcal{A}_{X} V=-g_{M}\left(H^{\perp}, V\right) X$.
Hence,

$$
\begin{equation*}
g_{M}\left(\mathcal{A}_{X} V, X\right)=-g_{M}\left(H^{\perp}, V\right)\|X\|^{2} . \tag{4.7}
\end{equation*}
$$

But

$$
\begin{aligned}
g_{M}\left(\mathcal{A}_{X} V, X\right) & =g_{M}\left(\nabla_{X} V, X\right)=-g_{M}\left(V, \nabla_{X} X\right) \\
& =-g_{M}\left(V, \mathcal{A}_{X} X\right)=0 \quad(\text { by }(2.6))
\end{aligned}
$$

so that from (4.7), we have $H^{\perp}=0$.
Therefore, the result follows.
Remark 4.5. From the equation $\mathcal{A}_{X} Y=-\mathcal{A}_{Y} X$ for $X, Y \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$, we can obtain Theorem 4.4. But the equation $\mathcal{T}_{V} W=\mathcal{T}_{W} V$ for $V, W \in \Gamma\left(\operatorname{ker} F_{*}\right)$, yields no theorems like Theorem 4.4 on $\operatorname{ker} F_{*}$.

Theorem 4.6. Let F be an h-anti-invariant submersion from a hyperkähler manifold (M, I, J, K, g_{M}) onto a Riemannian manifold $\left(N, g_{N}\right)$ such that (I, J, K) is an h-anti-invariant basis. Then the following conditions are equivalent:
(a) the distribution $\operatorname{ker} F_{*}$ defines a totally umbilic foliation on M.
(b)

$$
\mathcal{T}_{V} B_{I} X+\mathcal{H} \nabla_{V} C_{I} X=-g_{M}(H, X) I V
$$

for $V \in \Gamma\left(\operatorname{ker} F_{*}\right)$ and $X \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$.
(c)

$$
\mathcal{T}_{V} B_{J} X+\mathcal{H} \nabla_{V} C_{J} X=-g_{M}(H, X) J V
$$

for $V \in \Gamma\left(\operatorname{ker} F_{*}\right)$ and $X \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$.
(d)

$$
\mathcal{T}_{V} B_{K} X+\mathcal{H} \nabla_{V} C_{K} X=-g_{M}(H, X) K V
$$

for $V \in \Gamma\left(\operatorname{ker} F_{*}\right)$ and $X \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$.
Proof. Given $V, W \in \Gamma\left(\operatorname{ker} F_{*}\right), X \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$, and $R \in\{I, J, K\}$, we obtain

$$
\begin{aligned}
g_{M}\left(\mathcal{T}_{V} W, X\right) & =g_{M}\left(\nabla_{V} R W, R X\right) \\
& =-g_{M}\left(R W, \nabla_{V} B_{R} X+\nabla_{V} C_{R} X\right) \\
& =-g_{M}\left(R W, \mathcal{T}_{V} B_{R} X+\mathcal{H} \nabla_{V} C_{R} X\right)
\end{aligned}
$$

so that it is easy to check that

$$
\mathcal{T}_{V} W=g_{M}(V, W) H \Leftrightarrow \mathcal{T}_{V} B_{R} X+\mathcal{H} \nabla_{V} C_{R} X=-g_{M}(H, X) R V
$$

Hence,

$$
(\mathrm{a}) \Leftrightarrow(\mathrm{b}), \quad(\mathrm{a}) \Leftrightarrow(\mathrm{c}), \quad(\mathrm{a}) \Leftrightarrow(\mathrm{d}) .
$$

Therefore, we get the result.

Lemma 4.7. Let F be an h-Lagrangian submersion from a hyperkähler manifold $\left(M, I, J, K, g_{M}\right)$ onto a Riemannian manifold $\left(N, g_{N}\right)$ such that (I, J, K) is an hLagrangian basis. Then the following conditions are equivalent:
(a) The distribution $\operatorname{ker} F_{*}$ defines a totally umbilic foliation on M.
(b) $\mathcal{T}_{V} I X=-g_{M}(H, X) I V$ for $X \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$ and $V \in \Gamma\left(\operatorname{ker} F_{*}\right)$.
(c) $\mathcal{T}_{V} K X=-g_{M}(H, X) K V$ for $X \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$ and $V \in \Gamma\left(\operatorname{ker} F_{*}\right)$.
(d) $\mathcal{T}_{V} J X=-g_{M}(H, X) J V$ for $X \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$ and $V \in \Gamma\left(\operatorname{ker} F_{*}\right)$.

Proof. By the proof of Theorem 4.6, we have (a) $\Leftrightarrow(\mathrm{b})$ and (a) \Leftrightarrow (c).
Given $V, W \in \Gamma\left(\operatorname{ker} F_{*}\right)$ and $X \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$, we get

$$
\begin{aligned}
g_{M}\left(\mathcal{T}_{V} W, X\right) & =g_{M}\left(\nabla_{V} J W, J X\right) \\
& =-g_{M}\left(J W, \nabla_{V} J X\right) \\
& =-g_{M}\left(J W, \mathcal{T}_{V} J X\right)
\end{aligned}
$$

so that we easily check that

$$
\mathcal{T}_{V} W=g_{M}(V, W) H \Leftrightarrow \mathcal{T}_{V} J X=-g_{M}(H, X) J V
$$

Hence, (a) \Leftrightarrow (d).
Therefore, the result follows.
Using Proposition 4.1, Theorem 3.11, and Theorem 4.6, we get

Theorem 4.8. Let F be an h-anti-invariant submersion from a hyperkähler manifold (M, I, J, K, g_{M}) onto a Riemannian manifold (N, g_{N}) such that (I, J, K) is an h-anti-invariant basis. Then the following conditions are equivalent:
(a) $\left(M, g_{M}\right)$ is locally a twisted product manifold of the form $M_{\left(\operatorname{ker} F_{*}\right)^{\perp}} \times M_{\mathrm{ker} F_{*}}$.

$$
\begin{equation*}
g_{M}\left(\mathcal{A}_{X} B_{I} Y, I V\right)=g_{M}\left(C_{I} Y, I \mathcal{A}_{X} V\right) \tag{b}
\end{equation*}
$$

and

$$
\mathcal{T}_{V} B_{I} X+\mathcal{H} \nabla_{V} C_{I} X=-g_{M}(H, X) I V
$$

for $V \in \Gamma\left(\operatorname{ker} F_{*}\right)$ and $X, Y \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$.
(c)

$$
g_{M}\left(\mathcal{A}_{X} B_{J} Y, J V\right)=g_{M}\left(C_{J} Y, J \mathcal{A}_{X} V\right)
$$

and

$$
\mathcal{T}_{V} B_{J} X+\mathcal{H} \nabla_{V} C_{J} X=-g_{M}(H, X) J V
$$

for $V \in \Gamma\left(\operatorname{ker} F_{*}\right)$ and $X, Y \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$.
(d)

$$
g_{M}\left(\mathcal{A}_{X} B_{K} Y, K V\right)=g_{M}\left(C_{K} Y, K \mathcal{A}_{X} V\right)
$$

and

$$
\mathcal{T}_{V} B_{K} X+\mathcal{H} \nabla_{V} C_{K} X=-g_{M}(H, X) K V
$$

for $V \in \Gamma\left(\operatorname{ker} F_{*}\right)$ and $X, Y \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$.
Using Proposition 4.1, Lemma 3.12, and Lemma 4.7, we have

Lemma 4.9. Let F be an h-Lagrangian submersion from a hyperkähler manifold $\left(M, I, J, K, g_{M}\right)$ onto a Riemannian manifold $\left(N, g_{N}\right)$ such that (I, J, K) is an h Lagrangian basis. Then the following conditions are equivalent:
(a) $\left(M, g_{M}\right)$ is locally a twisted product manifold of the form $M_{\left(\operatorname{ker} F_{*}\right) \perp} \times M_{\text {ker } F_{*}}$.

$$
\begin{equation*}
\mathcal{A}_{X} I Y=0 \quad \text { and } \quad \mathcal{T}_{V} I X=-g_{M}(H, X) I V \tag{b}
\end{equation*}
$$

for $X, Y \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$ and $V \in \Gamma\left(\operatorname{ker} F_{*}\right)$.
(c)

$$
\mathcal{A}_{X} K Y=0 \quad \text { and } \quad \mathcal{T}_{V} K X=-g_{M}(H, X) K V
$$

for $X, Y \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$ and $V \in \Gamma\left(\operatorname{ker} F_{*}\right)$.
(d)

$$
\mathcal{A}_{X} J Y=0 \quad \text { and } \quad \mathcal{T}_{V} J X=-g_{M}(H, X) J V
$$

for $X, Y \in \Gamma\left(\left(\operatorname{ker} F_{*}\right)^{\perp}\right)$ and $V \in \Gamma\left(\operatorname{ker} F_{*}\right)$.
Now, we consider the non-existence of some types of Riemannian submersions.
Using Proposition 4.1 and Theorem 4.4, we get

Theorem 4.10. Let $\left(M, E, g_{M}\right)$ be an almost quaternionic Hermitian manifold and $\left(N, g_{N}\right)$ a Riemannian manifold. Then there exists no h-anti-invariant submersion from $M=\left(M, E, g_{M}\right)$ onto $\left(N, g_{N}\right)$ such that M is locally a nontrivial double-twisted product manifold of the form $M_{\left(\operatorname{ker} F_{*}\right)^{\perp}} \times M_{\mathrm{ker} F_{*}}$.

Lemma 4.11. Let $\left(M, E, g_{M}\right)$ be an almost quaternionic Hermitian manifold and $\left(N, g_{N}\right)$ a Riemannian manifold. Then there exists no h-Lagrangian submersion from $M=\left(M, E, g_{M}\right)$ onto $\left(N, g_{N}\right)$ such that M is locally a nontrivial double-twisted product manifold of the form $M_{\left(\operatorname{ker} F_{*}\right) \perp} \times M_{\mathrm{ker} F_{*}}$.

Theorem 4.12. Let $\left(M, E, g_{M}\right)$ be an almost quaternionic Hermitian manifold and $\left(N, g_{N}\right)$ a Riemannian manifold. Then there exists no h-anti-invariant submersion from $M=\left(M, E, g_{M}\right)$ onto $\left(N, g_{N}\right)$ such that M is locally a nontrivial twisted product manifold of the form $M_{\mathrm{ker} F_{*}} \times M_{\left(\operatorname{ker} F_{*}\right)^{\perp}}$.

Lemma 4.13. Let $\left(M, E, g_{M}\right)$ be an almost quaternionic Hermitian manifold and $\left(N, g_{N}\right)$ a Riemannian manifold. Then there exists no h-Lagrangian submersion from $M=\left(M, E, g_{M}\right)$ onto $\left(N, g_{N}\right)$ such that M is locally a nontrivial twisted product manifold of the form $M_{\operatorname{ker} F_{*}} \times M_{\left(\operatorname{ker} F_{*}\right)^{\perp}}$.

References

[1] C. Altafini: Redundant robotic chains on Riemannian submersions. IEEE Transactions on Robotics and Automation 20 (2004), 335-340.
[2] D. V. Alekseevsky, S. Marchiafava: Almost complex submanifolds of quaternionic manifolds. Steps in differential geometry (Kozma, L. et al., eds.). Proc. of the colloquium on differential geometry, Debrecen, 2000, Inst. Math. Inform. Debrecen, 2001, pp. 23-38.
[3] P. Baird, J. C. Wood: Harmonic Morphisms between Riemannian Manifolds. London Mathematical Society Monographs, New Series 29, Oxford University Press, Oxford, 2003.
[4] A. L. Besse: Einstein Manifolds. Ergebnisse der Mathematik und ihrer Grenzgebiete, Springer, Berlin, 1987.
zbl MR doi
[5] J.-P. Bourguignon: A mathematician's visit to Kaluza-Klein theory. Conf. on Partial Differential Equations and Geometry, Torino, 1988, Rend. Sem. Mat. Univ. Politec. Torino, Special Issue (1989), 143-163.
zbl MR doi

6] J. P. Bourguignon, H. B. Lawson Jr.: Stability and isolation phenomena for Yang-Mills fields. Commum. Math. Phys. 79 (1981), 189-230.
zbl MR doi
[7] D. Chinea: Almost contact metric submersions. Rend. Circ. Mat. Palermo II. Ser. 34 (1985), 89-104.
zbl MR doi
[8] V. Cortés, C. Mayer, T. Mohaupt, F. Saueressig: Special geometry of Euclidean supersymmetry I. Vector multiplets. J. High Energy Phys. (electronic) 3 (2004), no. 028, 73 pages.
[9] M. Falcitelli, S. Ianus, A. M. Pastore: Riemannian Submersions and Related Topics. World Scientific Publishing, River Edge, 2004.
zbl MR doi
[10] A. Gray: Pseudo-Riemannian almost product manifolds and submersions. J. Math. Mech. 16 (1967), 715-737.
zbl MR
[11] S. Ianuş, R. Mazzocco, G. E. Vîlcu: Riemannian submersions from quaternionic manifolds. Acta. Appl. Math. 104 (2008), 83-89.
zbl MR doi
[12] S. Ianus, M. Vişinescu: Kaluza-Klein theory with scalar fields and generalised Hopf manifolds. Classical Quantum Gravity 4 (1987), 1317-1325.
zbl MR doi
[13] S. Ianus, M. Visinescu: Space-time compactification and Riemannian submersions. The Mathematical Heritage of C. F. Gauss, Collect. Pap. Mem. C. F. Gauss, World Sci. Publ., River Edge (1991), 358-371.
[14] J. C. Marrero, J. Rocha: Locally conformal Kähler submersions. Geom. Dedicata 52 (1994), 271-289.
zbl MR doi
[15] F. Mémoli, G. Sapiro, P. Thompson: Implicit brain imaging. NeuroImage 23 (2004), 179-188.
[16] M. T. Mustafa: Applications of harmonic morphisms to gravity. J. Math. Phys. 41 (2000), 6918-6929.
zbl MR doi
[17] B. O'Neill: The fundamental equations of a submersion. Mich. Math. J. 13 (1966), 458-469.
[18] K.-S. Park: H-semi-invariant submersions. Taiwanese J. Math. 16 (2012), 1865-1878.
[19] K.-S. Park: H-slant submersions. Bull. Korean Math. Soc. 49 (2012), 329-338.
[20] K.-S. Park: H-semi-slant submersions from almost quaternionic Hermitian manifolds. Taiwanese J. Math. 18 (2014), 1909-1926.
[21] R. Ponge, H. Reckziegel: Twisted products in pseudo-Riemannian geometry. Geom. Dedicata 48 (1993), 15-25.
zbl MR doi
zbl MR
zbl MR doi
zbl MR doi
[22] B. Şahin: Anti-invariant Riemannian submersions from almost Hermitian manifolds. Cent. Eur. J. Math. 8 (2010), 437-447.
zbl MR doi
[23] B. Şahin: Riemannian submersions from almost Hermitian manifolds. Taiwanese J. Math. 17 (2013), 629-659.
[24] B. Watson: Almost Hermitian submersions. J. Differ. Geom. 11 (1976), 147-165.
zbl MR doi
[25] B. Watson: G, G^{\prime}-Riemannian submersions and non-linear gauge field equations of general relativity. Global Analysis - Analysis on Manifolds. Teubner-Texte Math. 57, Teubner, Leipzig, 1983, pp. 324-349.
zbl MR doi
zbl MR

Author's address: Kwang-Soon Park, Division of General Mathematics, Room 4-107, Changgong Hall, University of Seoul, Seoul 02504, Republic of Korea, e-mail: parkksn@gmail.com.

