SOME FINITE GENERALIZATIONS OF EULER'S PENTAGONAL NUMBER THEOREM

Ji-Cai Liu, Wenzhou

Received February 10, 2016. First published March 1, 2017.

Abstract

Euler's pentagonal number theorem was a spectacular achievement at the time of its discovery, and is still considered to be a beautiful result in number theory and combinatorics. In this paper, we obtain three new finite generalizations of Euler's pentagonal number theorem.

Keywords: q-binomial coefficient; q-binomial theorem; pentagonal number theorem MSC 2010: 05A17, 11B65

1. Introduction

One of Euler's most profound discoveries, the pentagonal number theorem, see [1], Corollary 1.7, page 11, is stated as follows:

$$
\begin{equation*}
\prod_{k=1}^{\infty}\left(1-q^{k}\right)=\sum_{k=-\infty}^{\infty}(-1)^{k} q^{k(3 k+1) / 2} \tag{1.1}
\end{equation*}
$$

For some connections between the pentagonal number theorem and the theory of partitions, one refers to [1], page 10, and [2].

Throughout this paper, we assume $|q|<1$ and use the following q-series notation:

$$
(a ; q)_{0}=1, \quad(a ; q)_{n}=\prod_{k=0}^{n-1}\left(1-a q^{k}\right), \quad(a ; q)_{\infty}=\prod_{k=0}^{\infty}\left(1-a q^{k}\right),
$$

and

$$
\left[\begin{array}{c}
n \\
m
\end{array}\right]=\left[\begin{array}{c}
n \\
m
\end{array}\right]_{q}= \begin{cases}\frac{(q ; q)_{n}}{(q ; q)_{m}(q ; q)_{n-m}} & \text { if } 0 \leqslant m \leqslant n \\
0, & \text { otherwise }\end{cases}
$$

Some finite forms of Euler's pentagonal number theorem have been already studied by several authors. Shanks in [7] proved that

$$
\begin{equation*}
\sum_{k=0}^{n}(-1)^{k} \frac{(q ; q)_{n}}{(q ; q)_{k}} q^{\binom{k+1}{2}+n k}=\sum_{k=-n}^{n}(-1)^{k} q^{k(3 k+1) / 2} \tag{1.2}
\end{equation*}
$$

which was a truncated version of (1.1). Note that (1.2) reduces to (1.1) when $n \rightarrow \infty$.
Berkovich and Garvan in [3] have found some finite generalizations of Euler's pentagonal number theorem. For example, they showed that

$$
\sum_{j=-\infty}^{\infty}(-1)^{j}\left[\begin{array}{c}
2 L-j \tag{1.3}\\
L+j
\end{array}\right] q^{j(3 j+1) / 2}=1
$$

By using a well-known cubic summation formula, Warnaar in [8] obtained another finite generalization of Euler's pentagonal number theorem:

$$
\sum_{j=-\infty}^{\infty}(-1)^{j}\left[\begin{array}{c}
2 L-j+1 \tag{1.4}\\
L+j
\end{array}\right] q^{j(3 j-1) / 2}=1
$$

Note that

$$
\lim _{L \rightarrow \infty}\left[\begin{array}{c}
2 L-j \\
L+j
\end{array}\right]=\lim _{L \rightarrow \infty}\left[\begin{array}{c}
2 L-j+1 \\
L+j
\end{array}\right]=\frac{1}{(q ; q)_{\infty}}
$$

Then both (1.3) and (1.4) reduce to (1.1) when $L \rightarrow \infty$.
The first aim of the paper is to show the following finite form of (1.1):

Theorem 1.1. Let n be any non-negative integer. Then

$$
\sum_{k=0}^{\lfloor n / 2\rfloor}(-1)^{k}\left[\begin{array}{c}
n-k \tag{1.5}\\
k
\end{array}\right] q^{\binom{k+1}{2}}=\sum_{k=-\lfloor(n+1) / 3\rfloor}^{\lfloor n / 3\rfloor}(-1)^{k} q^{k(3 k+1) / 2},
$$

where $\lfloor x\rfloor$ denotes the greatest integer less than or equal to a real number x.
Observe that

$$
\lim _{n \rightarrow \infty}\left[\begin{array}{c}
n-k \\
k
\end{array}\right]=\lim _{n \rightarrow \infty} \frac{(q ; q)_{n-k}}{(q ; q)_{k}(q ; q)_{n-2 k}}=\frac{1}{(q ; q)_{k}}
$$

By Tannery's theorem, see [4], page 136, letting $n \rightarrow \infty$ in (1.5) reduces it to

$$
\begin{equation*}
\sum_{k=0}^{\infty} \frac{(-1)^{k} q^{\binom{k+1}{2}}}{(q ; q)_{k}}=\sum_{k=-\infty}^{\infty}(-1)^{k} q^{k(3 k+1) / 2} \tag{1.6}
\end{equation*}
$$

By [1], (2.2.6), we have

$$
\begin{equation*}
\sum_{k=0}^{\infty} \frac{(-1)^{k} q^{\binom{k+1}{2}}}{(q ; q)_{k}}=(q ; q)_{\infty} \tag{1.7}
\end{equation*}
$$

which is a special case of the q-binomial theorem, see [1], Theorem 2.1, page 17 . Combining (1.6) and (1.7), we are led to (1.1).

The second result consists of the following two finite generalizations of (1.1):

Theorem 1.2. Suppose m is a positive integer. Then

$$
\begin{gather*}
\frac{1-q^{3 m}}{1+q^{m}} \sum_{k=-m}^{\lfloor m / 2\rfloor}(-1)^{k}\left[\begin{array}{c}
2 m-k \\
m+k
\end{array}\right] \frac{q^{k(3 k-1) / 2}}{1-q^{2 m-k}}=1, \tag{1.8}\\
\left(1-q^{3 m-1}\right) \sum_{k=-m}^{\lfloor(m-1) / 2\rfloor}(-1)^{k}\left[\begin{array}{c}
2 m-k-1 \\
m+k
\end{array}\right] \frac{q^{k(3 k+1) / 2}}{1-q^{2 m-k-1}}=1 . \tag{1.9}
\end{gather*}
$$

Note that $|q|<1$ and

$$
\lim _{m \rightarrow \infty}\left[\begin{array}{c}
2 m-k \\
m+k
\end{array}\right]=\lim _{m \rightarrow \infty}\left[\begin{array}{c}
2 m-k-1 \\
m+k
\end{array}\right]=\frac{1}{(q ; q)_{\infty}}
$$

By Tannery's theorem, see [4], page 136, we conclude that both (1.8) and (1.9) reduce to (1.1) when $m \rightarrow \infty$.

2. Proof of Theorems 1.1 and 1.2

In order to prove the main results, we need some lemmas.

Lemma 2.1 ([1], page 35). Let $0 \leqslant m \leqslant n$ be integers. Then

$$
\begin{aligned}
& {\left[\begin{array}{c}
n \\
m
\end{array}\right]=\left[\begin{array}{c}
n-1 \\
m-1
\end{array}\right]+q^{m}\left[\begin{array}{c}
n-1 \\
m
\end{array}\right],} \\
& {\left[\begin{array}{c}
n \\
m
\end{array}\right]=\left[\begin{array}{c}
n-1 \\
m
\end{array}\right]+q^{n-m}\left[\begin{array}{c}
n-1 \\
m-1
\end{array}\right] .}
\end{aligned}
$$

The next two lemmas play important roles in our proof of Theorem 1.1 and 1.2. We shall prove these two lemmas together with Theorem 1.1.

Lemma 2.2. Suppose n is a non-negative integer. Then

$$
\left.\sum_{k=0}^{\lfloor n / 2\rfloor}(-1)^{k}\left[\begin{array}{c}
n-k \tag{2.1}\\
k
\end{array}\right] q^{k} \begin{array}{c}
k \\
2
\end{array}\right)= \begin{cases}(-1)^{m} q^{m(3 m-1) / 2} & \text { if } n=3 m \\
(-1)^{m} q^{m(3 m+1) / 2} & \text { if } n=3 m+1 \\
0 & \text { if } n=3 m-1\end{cases}
$$

Ekhad and Zeilberger in [5] proved (2.1) by Zeilberger's algorithm, see [6]. Warnaar in [8] gave another proof of (2.1) using a well-known cubic summation formula. We will present an essentially different proof by establishing relationships with other two results and using mathematical induction.

Lemma 2.3. For any non-negative integer n, we have

$$
\begin{align*}
&\left(1-q^{n}\right) \sum_{k=0}^{\lfloor n / 2\rfloor}(-1)^{k}\left[\begin{array}{c}
n-k \\
k
\end{array}\right] \frac{\left.q^{(k} 2\right)}{1-q^{n-k}} \tag{2.2}\\
&= \begin{cases}(-1)^{m}\left(1+q^{m}\right) q^{m(3 m-1) / 2} & \text { if } n=3 m \\
(-1)^{m} q^{m(3 m+1) / 2} & \text { if } n=3 m+1 \\
(-1)^{m} q^{m(3 m-1) / 2} & \text { if } n=3 m-1 .\end{cases}
\end{align*}
$$

Pro of of Theorem 1.1, Lemma 2.2 and Lemma 2.3. Denote the left-hand sides of (2.1), (2.2) and (1.5) by U_{n}, V_{n} and W_{n}, respectively. We shall prove (2.1), (2.2) and (1.5) by establishing the following relationships:

$$
\begin{align*}
W_{n} & =W_{n-1}-q^{n-1} U_{n-2}, \tag{2.3}\\
V_{n} & =U_{n}-q^{n-1} U_{n-2}, \tag{2.4}\\
V_{n} & =W_{n}-W_{n-2} \tag{2.5}
\end{align*}
$$

Substituting (2.3) into (2.5) gives

$$
\begin{equation*}
V_{n}=W_{n-1}-W_{n-2}-q^{n-1} U_{n-2} . \tag{2.6}
\end{equation*}
$$

By (2.4) and (2.6), we have

$$
\begin{equation*}
U_{n}=W_{n-1}-W_{n-2} \tag{2.7}
\end{equation*}
$$

Replacing n by $n-1$ in (2.3), we get

$$
\begin{equation*}
W_{n-1}-W_{n-2}=-q^{n-2} U_{n-3} \tag{2.8}
\end{equation*}
$$

By (2.7) and (2.8), we get

$$
U_{n}=-q^{n-2} U_{n-3} \quad \text { for } n \geqslant 3
$$

We can deduce (2.1) by induction from the initial values $U_{0}=1, U_{1}=1$ and $U_{2}=0$. Substituting (2.1) into (2.4), we get (2.2) directly.

We will prove (1.5) by using induction on n. It is easy to verify that (1.5) is true for $n=0,1,2$. Assume (1.5) is true for $N \leqslant n$. By (2.3), we have

$$
\begin{equation*}
W_{n+1}=W_{n}-q^{n} U_{n-1} . \tag{2.9}
\end{equation*}
$$

If $n=3 m$, by (2.1) and (2.9), we have $W_{n+1}=W_{n}$. It follows from the induction that

$$
W_{n+1}=W_{n}=\sum_{k=-\lfloor(n+1) / 3\rfloor}^{\lfloor n / 3\rfloor}(-1)^{k} q^{k(3 k+1) / 2}=\sum_{k=-\lfloor(n+2) / 3\rfloor}^{\lfloor(n+1) / 3\rfloor}(-1)^{k} q^{k(3 k+1) / 2},
$$

which implies that (1.5) is also true for $N=n+1$.
If $n=3 m+1$, it follows from (2.1) and (2.9) that

$$
W_{n+1}=W_{n}+(-1)^{m+1} q^{(m+1)(3 m+2) / 2}
$$

So we have

$$
\begin{aligned}
W_{n+1} & =\sum_{k=-\lfloor(n+1) / 3\rfloor}^{\lfloor n / 3\rfloor}(-1)^{k} q^{k(3 k+1) / 2}+(-1)^{m+1} q^{(m+1)(3 m+2) / 2} \\
& =\sum_{k=-\lfloor(n+2) / 3\rfloor}^{\lfloor(n+1) / 3\rfloor}(-1)^{k} q^{k(3 k+1) / 2},
\end{aligned}
$$

which proves (1.5) for the case $N=n+1$.
If $n=3 m+2$, using (2.1) and (2.9), we get

$$
W_{n+1}=W_{n}+(-1)^{m+1} q^{(m+1)(3 m+4) / 2}
$$

and hence

$$
\begin{aligned}
W_{n+1} & =\sum_{k=-\lfloor(n+1) / 3\rfloor}^{\lfloor n / 3\rfloor}(-1)^{k} q^{k(3 k+1) / 2}+(-1)^{m+1} q^{(m+1)(3 m+4) / 2} \\
& =\sum_{k=-\lfloor(n+2) / 3\rfloor}^{\lfloor n+1 / 3\rfloor}(-1)^{k} q^{k(3 k+1) / 2},
\end{aligned}
$$

which implies that (1.5) is true for $N=n+1$. This concludes the proof of (1.5).

It remains to prove (2.3)-(2.5). From Lemma 2.1, we have

$$
\left[\begin{array}{c}
n-k \\
k
\end{array}\right]=\left[\begin{array}{c}
n-k-1 \\
k
\end{array}\right]+q^{n-2 k}\left[\begin{array}{c}
n-k-1 \\
k-1
\end{array}\right] .
$$

It follows that

$$
\begin{aligned}
W_{n} & =\sum_{k=0}^{\lfloor(n-1) / 2\rfloor}(-1)^{k}\left[\begin{array}{c}
n-k-1 \\
k
\end{array}\right] q^{\binom{k+1}{2}}+q^{n-1} \sum_{k=1}^{\lfloor n / 2\rfloor}(-1)^{k}\left[\begin{array}{c}
n-k-1 \\
k-1
\end{array}\right] q^{\binom{k-1}{2}} \\
& =W_{n-1}-q^{n-1} \sum_{k=0}^{\lfloor(n-2) / 2\rfloor}(-1)^{k}\left[\begin{array}{c}
n-k-2 \\
k
\end{array}\right] q^{\binom{k}{2}} \\
& =W_{n-1}-q^{n-1} U_{n-2} .
\end{aligned}
$$

This concludes the proof of (2.3).
Note that $1-q^{n}=1-q^{n-k}+q^{n-k}\left(1-q^{k}\right)$. Then

$$
\begin{aligned}
V_{n} & =\sum_{k=0}^{\lfloor n / 2\rfloor}(-1)^{k}\left[\begin{array}{c}
n-k \\
k
\end{array}\right] q^{\binom{k}{2}}+q^{n-1} \sum_{k=0}^{\lfloor n / 2\rfloor}(-1)^{k}\left[\begin{array}{c}
n-k \\
k
\end{array}\right] \frac{1-q^{k}}{1-q^{n-k}} q^{\binom{k-1}{2}} \\
& =U_{n}+q^{n-1} \sum_{k=1}^{\lfloor n / 2\rfloor}(-1)^{k}\left[\begin{array}{c}
n-k-1 \\
k-1
\end{array}\right] q^{\binom{k-1}{2}} \\
& =U_{n}-q^{n-1} \sum_{k=0}^{\lfloor(n-2) / 2\rfloor}(-1)^{k}\left[\begin{array}{c}
n-k-2 \\
k
\end{array}\right] q^{\binom{k}{2}} \\
& =U_{n}-q^{n-1} U_{n-2}
\end{aligned}
$$

which is (2.4).
Applying the fact:

$$
\frac{1-q^{n}}{1-q^{n-k}}=\frac{1-q^{k}}{1-q^{n-k}}+q^{k}
$$

we get

$$
\left[\begin{array}{c}
n-k \tag{2.10}\\
k
\end{array}\right] \frac{1-q^{n}}{1-q^{n-k}}=\left[\begin{array}{c}
n-k-1 \\
k-1
\end{array}\right]+\left[\begin{array}{c}
n-k \\
k
\end{array}\right] q^{k} .
$$

Substituting (2.10) into the left-hand side of (2.2) gives

$$
\begin{aligned}
V_{n} & =\sum_{k=1}^{\lfloor n / 2\rfloor}(-1)^{k}\left[\begin{array}{c}
n-k-1 \\
k-1
\end{array}\right] q^{\binom{k}{2}}+\sum_{k=0}^{\lfloor n / 2\rfloor}(-1)^{k}\left[\begin{array}{c}
n-k \\
k
\end{array}\right] q^{\binom{k+1}{2}} \\
& =-\sum_{k=0}^{\lfloor(n-2) / 2\rfloor}(-1)^{k}\left[\begin{array}{c}
n-k-2 \\
k
\end{array}\right] q^{\binom{k+1}{2}}+W_{n}=-W_{n-2}+W_{n} .
\end{aligned}
$$

This proves (2.5). Now we complete the proof of (2.3)-(2.5).

Pro of of Theorem 1.2. Replacing n by $3 m$ in (2.2) and then letting $k \rightarrow m+k$, we obtain

$$
\left(1-q^{3 m}\right) \sum_{k=-m}^{m}(-1)^{k}\left[\begin{array}{c}
2 m-k \tag{2.11}\\
m+k
\end{array}\right] \frac{q^{\binom{m+k}{2}}}{1-q^{2 m-k}}=\left(1+q^{m}\right) q^{m(3 m-1) / 2}
$$

Note that

$$
\begin{aligned}
{\left[\begin{array}{c}
n \\
m
\end{array}\right]_{q^{-1}} } & =\frac{\left(1-q^{-1}\right)\left(1-q^{-2}\right) \ldots\left(1-q^{-n}\right)}{\left(1-q^{-1}\right) \ldots\left(1-q^{-m}\right)\left(1-q^{-1}\right) \ldots\left(1-q^{-(n-m)}\right)} \\
& =\frac{(1-q)\left(1-q^{2}\right) \ldots\left(1-q^{n}\right)}{(1-q) \ldots\left(1-q^{m}\right)(1-q) \ldots\left(1-q^{n-m}\right)} q^{\binom{m+1}{2}+\binom{n-m+1}{2}-\binom{n+1}{2}} \\
& =\left[\begin{array}{c}
n \\
m
\end{array}\right]_{q} q^{m(m-n)} .
\end{aligned}
$$

Letting $q \rightarrow q^{-1}$ in (2.11) and then using (2.12), we obtain (1.8).
Similarly, replacing n by $3 m-1$ in (2.2) and then letting $k \rightarrow m+k$ and $q \rightarrow q^{-1}$, we get (1.9).

Acknowledgment. The author would like to thank the referee for careful review and valuable comments, which improved the presentation of the paper.

References

[1] G.E. Andrews: The Theory of Partitions. Encyclopedia of Mathematics and Its Applications, Vol. 2. Section: Number Theory. Reading, Advanced Book Program, Addi-son-Wesley Publishing Company, Massachusetts, 1976.
[2] G. E. Andrews: Euler's pentagonal number theorem. Math. Mag. 56 (1983), 279-284.
zbl MR doi
[3] A. Berkovich, F. G. Garvan: Some observations on Dyson's new symmetries of partitions. J. Comb. Theory, Ser. A 100 (2002), 61-93.
zbl MR doi
[4] T. J. Bromwich: An Introduction to the Theory of Infinite Series. Chelsea Publishing Company, New York, 1991.
[5] S. B. Ekhad, D. Zeilberger: The number of solutions of $X^{2}=0$ in triangular matrices over GF (q). Electron. J. Comb. 3 (1996), Research paper R2, 2 pages; printed version in J. Comb. 3 (1996), 25-26.
[6] M. Petkovšek, H.S. Wilf, D. Zeilberger: $A=B$. With foreword by Donald E. Knuth, A. K. Peters, Wellesley, 1996.
[7] D. Shanks: A short proof of an identity of Euler. Proc. Am. Math. Soc. 2 (1951), 747-749.
[8] S. O. Warnaar: q-hypergeometric proofs of polynomial analogues of the triple product identity, Lebesgue's identity and Euler's pentagonal number theorem. Ramanujan J. 8 (2004), 467-474.

Author's address: Ji-C a i Liu, College of Mathematics and Information Science, Wenzhou University, 276 Xueyuan Middle Road, Wenzhou, 325027, Zhejiang, P. R. China, e-mail: jc2051@163.com.

