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Abstract. We study the presence of copies of I;’s uniformly in the spaces II2(C10, 1], X)
and II1(C[0,1],X). By using Dvoretzky’s theorem we deduce that if X is an infinite-
dimensional Banach space, then II2(C0, 1], X) contains Av/2-uniformly copies of I%’s and
I1;(C[0,1], X) contains A-uniformly copies of [3’s for all A > 1. As an application, we
show that if X is an infinite-dimensional Banach space then the spaces II3(C[0, 1], X') and
IT; (C[0, 1], X) are distinct, extending the well-known result that the spaces II2(C[0, 1], X)
and NV (C|0, 1], X) are distinct.
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1. INTRODUCTION AND NOTATION

The main purpose of this paper is to study the presence of copies of [}}’s uni-
formly in the spaces II3(C]0, 1], X) and II;(C]0,1], X). Let us fix some notation
and concepts used below. The scalar field R (or C) is denoted by K and if n € N,

n 1/p
1 <p < oo, then I = (K™|||,), where [[(a1,- .., an)ll, = (z |ozi|p> if p < oo
i=1
and ||(a1,...,an)]le = max |ai]. By (ei)1<icn we denote the standard unit vectors
<ign
in K, ie. e; = (0,...,0,1,0,...,0). For 1 < p < oo we write, as usual, p* for
the conjugate of p, i.e. 1/p+ 1/p* = 1. If a = (a;)1<i<n € K™, 1 < p,¢ < o0,
My I — I is the multiplication operator, i.e. My ((&i)1<i<n) = (@ii)i1<i<n- By
o [0,1] = R, 7, (t) = (=1)2"* we denote the Rademacher functions ([-] denotes

the integer part) and C[0,1] is the space of all scalar-valued continuous functions
on [0,1] under the uniform norm.
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Let 1 < p < ooand 1 <A < oco. We say that a Banach space X contains I ’s
A-uniformly or that X contains A\-uniformly copies of 1 if for every n € N there
exists a linear operator J,,: Iy — X such that

ey < [Jn(@lx < Mlallp,  acl,

(see [3], page 260). Let X, Y be Banach spaces and 1 < p < oo. A linear opera-
tor T: X — Y is p-summing if there exists a constant C' > 0 such that for every

n 1/p n 1/p
n €N, z1,...,2, € X the relation (Z ||T(xz)|\p) < C sup ( |x*(mi)|p)
=1 o ll<1 Ni=1

holds and the p-summing norm of T is defined by 7,(T) := min{C: C as above}.

i=

We denote by II,(X,Y) the class of all p-summing operators from X into Y (see [2],
[3], [4], [6]). Let X and Y be Banach spaces. If A is a set, the notation (2, )nen C A
means that z,, € A for every n € N. A bounded linear operator T: X — Y is called

o0
nuclear if there exist (x7)nen C X*, (yn)nen C Ysuch that > ||z} ||||lyn] < co and
n=1

o0
T(z) = 21 x} (x)ypn for € X; such a representation is called a nuclear represen-
n=

tation of T and the nuclear norm of T is defined by ||T||nuc := inf{ > ||x;||||yn|\},
n=1

where the infimum is taken over all the nuclear representations of 7. We denote
by N(X,Y) the space of all nuclear operators from X into Y (see [2], [3], [4], [6]).
In [10], Theorem 4.2, it was shown that, if X is an infinite-dimensional Banach
space, then N (C|0, 1], X) # II2(C[0, 1], X). As a natural consequence of our results,
we recover the folklore result that if X is an infinite dimensional Banach space,
then II; (C[0, 1], X) # I2(C[0,1], X ), and hence N (C[0, 1], X) # II5(C[0,1], X), see
Corollary 1.
All notation and terminology, not otherwise explained, are as in [2], [3], [4], [6].

PRELIMINARY RESULTS
The next Lemma is essentially well-known (see [8], Lemma 10).

Lemma 1. Let 1 <p < oo, n €N, a= (a;)i1<i<n € K" and let Uy : C[0,1] — 1y
be the operator defined by UZ(f) = (o fol f@&)ri(t) dt)lgign' Then:
Q) 272l < U2 € m(U2) < |l if 1 < p <2, where 1/p =1/2+ 1/r and
2712 lafloe < UZ < m(UZ) < llafle if 2 < p < 0.

(i) ™ (Ug) = llallp-

Proof. The representing measure of Uy is G: ¥ — [} defined by G7,(F) :=
(i [ri(t)dt), .., where ¥ is the o-algebra of all borelian subsets of [0, 1], see [4],
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Theorem 1, page 152 Let h”' [0,1] — I} be given by hy(t) = (airi(t))1<ign and
observe that G%(E) = [, hi(t)dt for E € E (the Bochner integral).
(i) From [4], Theorem 1, page 152, and Proposition 11, page 4, we have

U&= IGAII([0,1]) = sup [y* o GG[([0,1]) = sup / [(y", ha(2))] dt
ly=lI<1 lly=lI<1
because (y* o Go)(E) = [L(y*, ))dt and |y* o GZ|( fo y*, ho (1)) dt.
However, for any y* = (fi)lgign € (ZZ) = lp. we have ( h2(t )) Zfla r;i(t)
n 1/2
and by Khinchin’s inequality 2’1/2<Z |§iai|2) fo y*, |dt hence
i=1

2712 M, < |G2([0,1]), where M,: lp- — I3 is the multiplication operator.

Thus we have shown that 27 /2| Mg: I7. — 13| < ||UZ||. Let us note that always
U2 < mo(UZ). Further, UZ: C[0,1] <, L,[0,1] it VS e Ly is a factorization of U},

where J is the canonical inclusion and R(f) = (fol f@)rit dt)1<i<n. Since J is
2-summing with 72(J) = 1 and [|R|| = 1, we deduce that m2(Uy) < [[My: 15 — ]|
Now, as is well known, |[My: 1. = 13| = ||[Ma: 15 — 7| = |lafl if 1 < p <2,
where 1/p =1/2+1/r and [|[My: I} — 3] = [|[My: 15 — 1] = max [a;| = [|a
1<ign

if 2 < p < o0, see [1], page 218, and the proof of (i) is ﬁnished
(ii) From [4], Theorem 3, page 162, 1 (U2) = |GZ|(| fo |R2(E)]p dt = ||l
(]

In the sequel the technique named Average of a finite number of elements, intro-
duced in [7], [9] is used to construct a useful kind of operators. Let us now fix some
notation and recall this concept.

Let n be a natural number. For (A1,...,\,) € K" we define the finite system
denoted by Average(A;: 1 < i < n) as being the system with 2" elements obtained
by arranging in the lexicographical order of D,, := {—1,1}" the elements e1 A\ +. ..+
EnAp for (e1,...,6,) € Dy, (On {—1,1} we consider the natural order). Thus, as
sets we have

Average(A\;: 1 <i<n)={es M +...+ep n: (61,...,6n) € Dy}

Let us note that if (A;)1<i<n € K" and (e(e,,....c..))(e1,....en)eD, are the standard unit
vectors in K" ordered in the lexicographical order of D,,, then the following equality
in K2" holds:

(1) Average(\;: 1 <i<n)= Z (E1A1 4o+ EnAn)€(er,. e
(81,...7677,)6Dn

459



If 1 < p < oo, by Khinchin’s inequality we have

1
2) Ay A2 < “Average(—)\i: 1<i< n)H
on/ ,

p

1 1/p
= (2_71 Z |51)\1+...+En)\n|p)

(€150 )EDR
< Bp”()\lv R An)

2.

Above and in the sequel 4,, B, are Khinchin’s constants (see [3]).

Lemma 2. Let 1 < p < oo, n € N, a = (a;)icicn € K" and let Avl:
C[0,1] — 12" be the operator defined by

1
Avg(f)—Average( T /0 F(ri(t) dt: 1<i<n).

Then:
(i) 4,272l aflee < ma(Av2) < Bylleco-
(i) Apllallz < mi(Avy) < Bpllalf2.

Proof. Let f € C[0,1]. From the relation (2) we have
AU (Dll2 < [Avg (N < BpllU& ()2

where UZ: C[0,1] — I3 is defined by UZ(f) = (a fol f@)ri(t)de Thus

)1<i§n'
Apma(UY) < ma(Avy) < Bpyma(UY) and  A,m(U7) < mi(Av))) < Bpmi (UY).

The conclusion follows, because in this case, by Lemma 1, 27'/2||a||s < m2(U7) <

[eleo and w1 (UF) = [z 0

We need also the second average which we describe next. Let n be a natural
number. Let us note that if (A1,...,A,) € K™ then

(3) CKZM |Average(A;: 1 <i < n)|so < Z|)\|

where ¢x = 1 if K := R; ¢x = 1/2 if K := C (in this case consider the real and the
imaginary part).
For (A1,...,An) € K™ let us denote the 2" elements of the set Average(A;: 1 <
n) by {1, B2,..., B2~} and apply the same procedure; we define

Saverage(A;: 1 <i < n):= Average(f5;: 1 <1<2")
on
= {6161 + ...+ EQ?LBQH : (61, .. .,EQn) S D27L} C Kz .
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From the relation (3) we have

CcK 1 . 1
(B B < | Saveragehes 1< 7 <)o < ) (B B

and since by Khinchin’s inequality

27l
1 1 1
—|[(A1,..., An é—g | = — E A nAn
\/5”( 1, ) )“2 on o |B | on |51 1+ +ée |

(61,...,57,,)6Dn
< ||()‘1; LRI An)HQ

we get

(4)

¢ 1 ;

%||(>\17---7>\n)||2 < gy [l Saverage(\i: 1<i <)oo <A+ An)lo-
Lemma 3. (a) Let n € N, a = (a;)1<i<n € K™ and let Av?: C[0,1] — 12 be

the operator defined by

Avy(f) = Average<ai /1 f@)yr(t)dt: 1 <i< n>
0

Then:
(i) ex27'2lall2 < ma(Avg) < [lalla-
(i) exllafy < m(Avg) < llalh.
(b) Let n € N, a = (a)1<icn € K™ and let Savy: C[0,1] — l?j," be the operator
defined by

1
Savi(f) := Saverage(%ai/ fOr)dt: 1<i < n)
0

Then:
(i) ex27Halloo < m2(Savyy) < [laflco-
(i) ex2"/2[lallz < m(Savl) < flafls.

Proof. (a)Let f € C[0,1]. From the relation (3) we have
e[|US (Nl < [Avg(Hlleo <ULl
where U C[0,1] = I} is defined by UZ(f) = (a; [y f()rs(t) dt)1<icn. Thus, easily,
cxm2(UY) < ma(Av)) < me(UY) and exmi (UY) < ma(Av)) < m(UY).
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The conclusion follows, because in this case, by Lemma 1, 27/2||als < m2(U?) <
ez and 1 (Ug) = (vl
(b) Let f € C[0,1]. From the relation (4) we have

\fllU”( M2 < [1Save (Hllee < [[UG ()2

where UZ: C[0,1] — 17 is defined by UZ(f) = (a fol f@)ri(t)dt), ;. . Thus

CK n n ny. CK n n n
ol T (Ugy) < ma(Savy) < ma(UY); ok m(Uy) < m(Savy) < m(UY).

The conclusion follows, because in this case, by Lemma 1, 27/2||a||o, < m(U?) <
[elloe and mi (Ug) = [[al2- O

THE RESULTS

In the next theorem, which is the main result of this paper, we show how the
local structure of the spaces I3 (C0, 1], X') and II;(C[0,1], X) depends on the local
structure of X.

Theorem 4. Let 1 < p < 00,1 < A< oo and let X be a Banach space which
contains l’s A-uniformly. Then:
(i) For 1 p < 2, TI,(C[0,1], X) contains A\v/2-uniformly copies of I7’s where
1/p= 1/2 +1/r.

(ii) For 2 < p < oo, IIx(C[0,1], X) contains A\v/2-uniformly copies of I ’s.

(iii) For 1 < p < 00, I5(C[0, 1], X) contains AB,/2/A,-uniformly copies of I ’s.
(iv) I1;(C10,1], X) contains A\-uniformly copies of I, ’s.

(v) For 1< p < oo, II(C[0,1], X) contains A\B),/A,-uniformly copies of 1§’s.

(vi) For 1 < p < oo, the spaces I12(C[0,1], X) and II;(C[0,1], X) are distinct; in

parmcu]ar, H2(C[ ) ]a ) #N( [Oa]-]aX)
Proof. (i), (ii) and (iv). Let n € N be arbitrary. By hypothesis there exists
a bounded linear operator J,,: [ — X such that

(%) lelly < In(@)llx < Alallp, o el

Let us define A,: K" — L(C[0,1], X) by Ap(a) = Jn o U}, where Uy : C[0,1] — I}
is the operator from Lemma 1. Though not needed in the sequel, let us note that if
a = (ai)lgign e K" and f € C[O, 1] then

>, (f o) )2, (c0).

i=1
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Let oo € K™. For every f € C[0,1] by (5) we have
1U&(Dlle < [TAn(@)](Hllx = [Ta(Ug (F)llx < MUZ(Np
and by the definition of p-summing operators we deduce that
(6)  m(Uy) < m(An(a)) S Am(Uy)  and  m(Uy) < mi(An(@)) < Am(Ug).

From (6) and Lemma 1 we obtain

ol < ma(vV24,
oo < T2(V240(0)) < MW2||aflee 2 < p < o0,
lally, < m1(An(a)) < Alallp,

+

Y

1
(@) < \W2|all, if1<p<2, where i

N =
S|

which ends the proof of (i), (ii) and (iv).
(iii) and (v). Let n € N be arbitrary. By hypothesis there exists a bounded linear
operator Jan : lgn — X such that

(7) 1€l < 1J2n () x < AllEllp, €2

We define Av,, : K™ — L(CI0, 1], X) by Av,(a) = Jan 0 Av}, where Avll: C[0,1] — lf)n
is the operator from Lemma 2. Again, though not needed in the sequel, let us note
that if & = (ovi)1<i<n € K™ and f € C[0, 1] we have

[Avn(aﬂ(f):;/p > (elal /0 FE)r(t)dt + ...

(¢1,-,€n)EDn
+enay, /01 F(@®)rn(t) dt> Jon(€(ey,...en))-
Let a € K™. For every f € C[0,1] by (7) we have
[Avg (N)llp < [[[Avn(@)](Hllx = [[Jan (Avg ()| x < Al Ava (Dl
and by the definition of p-summing operators we deduce that
(8) ma(Av))) < ma(Avy (@) < Ame(Av]) and w1 (Av]) < m1(Av,(a)) < Amp(AvY).

Since by Lemma 2

Ap

%Ilaﬂoo < m2(Avn (@) < Bpllaflee  and - Apflaflz < mi(Ava(a)) < Bpllfz,
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from (8) we obtain

V2
lalee < m2( 3 Ava()) <
P

AB,v/2
AP

Avy () AB,
< 22p
o)) < 2o,

Ap

lalloei oz < i (

which ends the proof of (iii) and (v).

(vi) If IIy(C[0,1], X) = II,(CI0,1],X), then by the open mapping theorem it
follows that there exists C' > 0 such that 71 (T) < Cm2(T) for all T € I1;(C[0, 1], X).
In particular, m1 (A, (@) < Cm2(An(a)) for all natural numbers n and all o € K.
By (i), (ii) and (iv) for all natural numbers n and all & € K™ we have ||a|, < C|la]|,
if1<p<2 where1/p=1/241/r, or ||of|, < C|lorf| o if 2 < p < 0. Taking

a=(1,...,1)
n-times
we get that for all natural numbers n we have n < C? if 1 < p < 2, or n < CP if
2 < p < oo, which is impossible. Let us note that a contradiction can be obtained if
we use (iii) or (v). If II,(C[0,1],X) = N(C[0,1], X) then, since N (C[0,1],X) C
I, (C[0,1], X) C II,(CJ0,1],X), it follows that II;(C[0,1],X) = IIx(CI0,1], X),
which as we have shown above is impossible. O

As a natural consequence of Theorem 4, we recover the folklore result that if X is an
infinite-dimensional Banach space then the spaces II;(C[0, 1], X) and II; (C[0, 1], X)
are distinct. This extends the well-known result that the spaces II(C10, 1], X') and
N(CI0,1], X) are distinct, see [10], Theorem 4.2.

Corollary 5. Let X be an infinite dimensional Banach space. Then:
(i) M2(C[0,1], X) contains A\v/2-uniformly copies of I ’s for all A > 1.
(ii) II,(CI0,1], X) contains A-uniformly copies of 1}’s for all A > 1.
(iii) The spaces II3(C[0,1],X) and II,(CI0,1],X) are distinct; in particular,
II,(C[0, 1], X) # N(CI0, 1], X).

Proof. Since X is infinite-dimensional, by the famous Dvoretzky theorem,
see [3], Chapter 19, X contains [%’s A-uniformly for all 1 < A < co. The statement
follows by taking p = 2 in Theorem 4. ([

Let us note that for p = oo in Theorem 4 ((ii) and (iv)) it follows that if 1 < A < oo
and X is a Banach space which contains [ ’s A-uniformly, then II5(C10, 1], X) con-
tains A\v/2-uniformly copies of 1”.’s and TI;(C[0, 1], X) contains A-uniformly copies
of I7’s, so in this case, there is no distinction between these classes.

We prove now a natural completion of Theorem 4. It shows that for p = oo in
Theorem 4 we have also a distinction if we use the first and the second average.
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Theorem 6. Let 1 < A < oo and let X be a Banach space which contains I7’s
A-uniformly. Then:
(i) Mx(C[0,1], X) contains \v/2-uniformly copies of I5’s in the real case (2\v/2-
uniformly copies of 13’s in the complex case).
(if) II;(CI0,1], X) contains A-uniformly copies of 1}’s in the real case (2\-uniformly
copies of 1{’s in the complex case).
(iii) IIy(C[0,1],X) contains 2\-uniformly copies of I%’s in the real case (4\-

uniformly copies of I7’s in the complex case).

(iv) T1(C[0,1],X) contains A\v/2-uniformly copies of I3’s in the real case (2\v/2-
uniformly copies of 1%’s in the complex case).

Proof. (i) and (ii). Let n € N be arbitrary. By hypothesis there exists

a bounded linear operator Jan : lgo — X such that

(9) €l < 1J2n(E)llx < Alléllos, € €12
We define Av,, : K" — L(C[0,1], X) by Av,(a) = JanoAv?, where Av": C[0,1] — 12

is the operator from Lemma 3. Let us note (not used in the sequel) the explicit

expression,

@)= Y <ela1 [ somars .

1
+enon, / FOm®) dt) o (€lercn)
0

where @ = (a;)1<i<n € K™ (see also the equality (1)). Let a € K™. For every
f € C[0,1] by (9) we have

[Ava (Hlloo < N[Ava())(Hllx = 1J2n (Avg (F))l[x < AlAvG ()l

and by the definition of p-summing operators we deduce that
(10) mo(Avy) < mo(Avp(a)) < Ame(Avy)

and
m1(Avy) < w1 (Avp(a)) < A (Avy).

Since by Lemma 3

CK

V2

ledl2 < me(Avn (@) < flalls and  exlally < m(Ava(a)) < o,
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from (10) we obtain

V2

CK

Avy ()

ez < ma
cK

A
Avn<a>)<ananz and lalls < ( )< ol

which ends the proof of (i) and (ii).
(iii) and (iv). Let n € N be arbitrary. By hypothesis there exists a bounded linear

operator Jozn : lgz — X such that

(11) 1€lloo < [[J22m () lx < M€llows € €12

We define Sav,,: K" — L(C[0,1],X) by Sav,(a) = Jy» o Savl, where Sav):
clo,1] — lgzn is the operator from Lemma 3. We leave for the interested reader to
write the explicit expresion for [Sav,(«)](f), which again is not used in the sequel.
Let o € K™. For every f € C[0,1] by (11) we have

[[Save, (fllee < [[Savn(@)I(F)llx = [[J22 (Save (f)llx < All Savg (f)lleo

and by the definition of p-summing operators we deduce that
(12) ma(Sav),) < ma(Savy, (a)) < Ame(Savy)

and
m1(Savy) < m(Savy (o)) < Am(Savy).

Since by Lemma 3
cK
2

C
ladloc < m2(Sava(@)) < llalee and =Flallz < m(Sava(a) < a2,

from (12) we obtain

llexll2,

2 22 V2 Sav,(a W2
llofloo < 7T2(— Savn(oz)> < —|afloo and |2 € 7T1( n( )) <
CK CK Cx c
which ends the proof of (iii) and (iv). 0

In [5] was shown that the space IT; (C[0, 1], X ) can be identified with the so called
space [§'°°(X); we refer the reader to the paper [5] for the definition of this space
and more details. From Theorems 4, 6 and Corollary 5 we get
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Corollary 7. (a) Let 1 < p < 00,1 < A < 0o and let X be a Banach space which
contains l;)’s A-uniformly. Then:
(i) I{**°(X) contains A-uniformly copies of 1’s.
(i) For 1 < p < oo, I§™°(X) contains AB,/A,-uniformly copies of 13s.
(b) Let 1 < A < oo and let X be a Banach space which contains 7 ’s A-uniformly.
Then:
(i) 1t°¢(X) contains \v/2-uniformly copies of 1}’s in the real case (2\v/2-uniformly
copies of [}’s in the complex case).
(ii) 14**¢(X) contains A-uniformly copies of 1%’s in the real case (2\-uniformly copies
of 13’s in the complex case).
(c) Let X be an infinite dimensional Banach space. Then [{¢(X) contains -
uniformly copies of 3’s for all A > 1.
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and remarks which have improved the quality of presentation.

References

[1] C. Costara, D. Popa: Exercises in Functional Analysis. Kluwer Texts in the Mathemat-

ical Sciences 26, Kluwer Academic Publishers Group, Dordrecht, 2003. IMR]

[2] A. Defant, K. Floret: Tensor Norms and Operator Ideals. North-Holland Mathematics

Studies 176, North-Holland Publishing, Amsterdam, 1993. MR

[3] J. Diestel, H. Jarchow, A. Tonge: Absolutely Summing Operators. Cambridge Studies in

Advanced Mathematics 43, Cambridge University Press, Cambridge, 1995. MR

[4] J. Diestel, J. J. Uhl, Jr.: Vector Measures. Mathematical Surveys 15, American Mathe-

matical Society, Providence, 1977. MR

[5] A.Lima, V. Lima, E. Oja: Absolutely summing operators on C[0, 1] as a tree space and

the bounded approximation property. J. Funct. Anal. 259 (2010), 2886-2901. IMR]

[6] A. Pietsch: Operator Ideals. Mathematische Monographien 16, VEB Deutscher der Wis-
senschaften, Berlin, 1978. MR
[7] D. Popa: Examples of operators on C[0, 1] distinguishing certain operator ideals. Arch.

Math. 88 (2007), 349-357. MR

[8] D. Popa: Khinchin’s inequality, Dunford-Pettis and compact operators on the space

C([0,1], X). Proc. Indian Acad. Sci., Math. Sci. 117 (2007), 13-30. MR

[9] D. Popa: Averages and compact, absolutely summing and nuclear operators on C(2).

J. Korean Math. Soc. 47 (2010), 899-924. zbl MR} doi]

[10] M. A. Sofi: Factoring operators over Hilbert-Schmidt maps and vector measures. Indag.

Math., New Ser. 20 (2009), 273-284. MR

Author’s address: Dumitru Popa, Department of Mathematics, Ovidius Univer-
sity of Constanta, Bd. Mamaia 124, 900527 Constanta, Romania, e-mail: dpopa@univ-
ovidius.ro.

467


https://zbmath.org/?q=an:1070.46001
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2027363
http://dx.doi.org/10.1007/978-94-017-0223-2
https://zbmath.org/?q=an:0774.46018
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1209438
http://dx.doi.org/10.1016/s0304-0208(08)x7019-7
https://zbmath.org/?q=an:0855.47016
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1342297
http://dx.doi.org/10.1017/CBO9780511526138
https://zbmath.org/?q=an:0369.46039
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0453964
http://dx.doi.org/10.1090/surv/015
https://zbmath.org/?q=an:1207.46019
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2719278
http://dx.doi.org/10.1016/j.jfa.2010.07.017
https://zbmath.org/?q=an:0399.47039
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0519680
https://zbmath.org/?q=an:1124.47013
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2311842
http://dx.doi.org/10.1007/s00013-006-1916-2
https://zbmath.org/?q=an:1124.47023
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2300675
http://dx.doi.org/10.1007/s12044-007-0002-4
https://zbmath.org/?q=an:1214.47023
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2722999
http://dx.doi.org/10.4134/JKMS.2010.47.5.899
https://zbmath.org/?q=an:1193.46005
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2599817
http://dx.doi.org/10.1016/S0019-3577(09)80014-1

