COPIES OF l_{p}^{n}, S UNIFORMLY IN THE SPACES $\Pi_{2}(C[0,1], X)$ AND $\Pi_{1}(C[0,1], X)$

Dumitru Popa, Constanţa

Received January 8, 2016. First published May 4, 2017.

Abstract. We study the presence of copies of l_{p}^{n} 's uniformly in the spaces $\Pi_{2}(C[0,1], X)$ and $\Pi_{1}(C[0,1], X)$. By using Dvoretzky's theorem we deduce that if X is an infinitedimensional Banach space, then $\Pi_{2}(C[0,1], X)$ contains $\lambda \sqrt{2}$-uniformly copies of l_{∞}^{n} 's and $\Pi_{1}(C[0,1], X)$ contains λ-uniformly copies of l_{2}^{n} 's for all $\lambda>1$. As an application, we show that if X is an infinite-dimensional Banach space then the spaces $\Pi_{2}(C[0,1], X)$ and $\Pi_{1}(C[0,1], X)$ are distinct, extending the well-known result that the spaces $\Pi_{2}(C[0,1], X)$ and $\mathcal{N}(C[0,1], X)$ are distinct.

Keywords: p-summing linear operators; copies of l_{p}^{n},s uniformly; local structure of a Banach space; multiplication operator; average

MSC 2010: 46B07, 47B10, 47L20, 46B28

1. Introduction and notation

The main purpose of this paper is to study the presence of copies of l_{p}^{n} 's uniformly in the spaces $\Pi_{2}(C[0,1], X)$ and $\Pi_{1}(C[0,1], X)$. Let us fix some notation and concepts used below. The scalar field $\mathbb{R}($ or $\mathbb{C})$ is denoted by \mathbb{K} and if $n \in \mathbb{N}$, $1 \leqslant p \leqslant \infty$, then $l_{p}^{n}=\left(\mathbb{K}^{n},\|\cdot\|_{p}\right)$, where $\left\|\left(\alpha_{1}, \ldots, \alpha_{n}\right)\right\|_{p}=\left(\sum_{i=1}^{n}\left|\alpha_{i}\right|^{p}\right)^{1 / p}$ if $p<\infty$ and $\left\|\left(\alpha_{1}, \ldots, \alpha_{n}\right)\right\|_{\infty}=\max _{1 \leqslant i \leqslant n}\left|\alpha_{i}\right|$. By $\left(e_{i}\right)_{1 \leqslant i \leqslant n}$ we denote the standard unit vectors in \mathbb{K}^{n}, i.e. $e_{i}=(0, \ldots, 0,1,0, \ldots, 0)$. For $1 \leqslant p \leqslant \infty$ we write, as usual, p^{*} for the conjugate of p, i.e. $1 / p+1 / p^{*}=1$. If $\alpha=\left(\alpha_{i}\right)_{1 \leqslant i \leqslant n} \in \mathbb{K}^{n}, 1 \leqslant p, q \leqslant \infty$, $M_{\alpha}: l_{p}^{n} \rightarrow l_{q}^{n}$ is the multiplication operator, i.e. $M_{\alpha}\left(\left(\xi_{i}\right)_{1 \leqslant i \leqslant n}\right):=\left(\alpha_{i} \xi_{i}\right)_{1 \leqslant i \leqslant n}$. By $r_{n}:[0,1] \rightarrow \mathbb{R}, r_{n}(t)=(-1)^{\left[2^{n} t\right]}$ we denote the Rademacher functions ([.] denotes the integer part) and $C[0,1]$ is the space of all scalar-valued continuous functions on $[0,1]$ under the uniform norm.

Let $1 \leqslant p \leqslant \infty$ and $1<\lambda<\infty$. We say that a Banach space X contains l_{p}^{n},s λ-uniformly or that X contains λ-uniformly copies of l_{p}^{n} if for every $n \in \mathbb{N}$ there exists a linear operator $J_{n}: l_{p}^{n} \rightarrow X$ such that

$$
\|\alpha\|_{p} \leqslant\left\|J_{n}(\alpha)\right\|_{X} \leqslant \lambda\|\alpha\|_{p}, \quad \alpha \in l_{p}^{n}
$$

(see [3], page 260). Let X, Y be Banach spaces and $1 \leqslant p<\infty$. A linear operator $T: X \rightarrow Y$ is p-summing if there exists a constant $C \geqslant 0$ such that for every $n \in \mathbb{N}, x_{1}, \ldots, x_{n} \in X$ the relation $\left(\sum_{i=1}^{n}\left\|T\left(x_{i}\right)\right\|^{p}\right)^{1 / p} \leqslant C \sup _{\left\|x^{*}\right\| \leqslant 1}\left(\sum_{i=1}^{n}\left|x^{*}\left(x_{i}\right)\right|^{p}\right)^{1 / p}$ holds and the p-summing norm of T is defined by $\pi_{p}(T):=\min \{C: C$ as above $\}$. We denote by $\Pi_{p}(X, Y)$ the class of all p-summing operators from X into Y (see [2], [3], [4], [6]). Let X and Y be Banach spaces. If A is a set, the notation $\left(x_{n}\right)_{n \in \mathbb{N}} \subset A$ means that $x_{n} \in A$ for every $n \in \mathbb{N}$. A bounded linear operator $T: X \rightarrow Y$ is called nuclear if there exist $\left(x_{n}^{*}\right)_{n \in \mathbb{N}} \subset X^{*},\left(y_{n}\right)_{n \in \mathbb{N}} \subset Y$ such that $\sum_{n=1}^{\infty}\left\|x_{n}^{*}\right\|\left\|y_{n}\right\|<\infty$ and $T(x)=\sum_{n=1}^{\infty} x_{n}^{*}(x) y_{n}$ for $x \in X$; such a representation is called a nuclear representation of T and the nuclear norm of T is defined by $\|T\|_{\text {nuc }}:=\inf \left\{\sum_{n=1}^{\infty}\left\|x_{n}^{*}\right\|\left\|y_{n}\right\|\right\}$, where the infimum is taken over all the nuclear representations of T. We denote by $\mathcal{N}(X, Y)$ the space of all nuclear operators from X into Y (see [2], [3], [4], [6]). In [10], Theorem 4.2, it was shown that, if X is an infinite-dimensional Banach space, then $\mathcal{N}(C[0,1], X) \neq \Pi_{2}(C[0,1], X)$. As a natural consequence of our results, we recover the folklore result that if X is an infinite dimensional Banach space, then $\Pi_{1}(C[0,1], X) \neq \Pi_{2}(C[0,1], X)$, and hence $\mathcal{N}(C[0,1], X) \neq \Pi_{2}(C[0,1], X)$, see Corollary 1.

All notation and terminology, not otherwise explained, are as in [2], [3], [4], [6].

Preliminary Results

The next Lemma is essentially well-known (see [8], Lemma 10).
Lemma 1. Let $1 \leqslant p \leqslant \infty, n \in \mathbb{N}, \alpha=\left(\alpha_{i}\right)_{1 \leqslant i \leqslant n} \in \mathbb{K}^{n}$ and let $U_{\alpha}^{n}: C[0,1] \rightarrow l_{p}^{n}$ be the operator defined by $U_{\alpha}^{n}(f)=\left(\alpha_{i} \int_{0}^{1} f(t) r_{i}(t) \mathrm{d} t\right)_{1 \leqslant i \leqslant n}$. Then:
(i) $2^{-1 / 2}\|\alpha\|_{r} \leqslant\left\|U_{\alpha}^{n}\right\| \leqslant \pi_{2}\left(U_{\alpha}^{n}\right) \leqslant\|\alpha\|_{r}$ if $1 \leqslant p<2$, where $1 / p=1 / 2+1 / r$ and $2^{-1 / 2}\|\alpha\|_{\infty} \leqslant\left\|U_{\alpha}^{n}\right\| \leqslant \pi_{2}\left(U_{\alpha}^{n}\right) \leqslant\|\alpha\|_{\infty}$ if $2 \leqslant p \leqslant \infty$.
(ii) $\pi_{1}\left(U_{\alpha}^{n}\right)=\|\alpha\|_{p}$.

Proof. The representing measure of U_{α}^{n} is $G_{\alpha}^{n}: \Sigma \rightarrow l_{p}^{n}$ defined by $G_{\alpha}^{n}(E):=$ $\left(\alpha_{i} \int_{E} r_{i}(t) \mathrm{d} t\right)_{1 \leqslant i \leqslant n}$, where Σ is the σ-algebra of all borelian subsets of $[0,1]$, see [4],

Theorem 1, page 152. Let $h_{\alpha}^{n}:[0,1] \rightarrow l_{p}^{n}$ be given by $h_{\alpha}^{n}(t)=\left(\alpha_{i} r_{i}(t)\right)_{1 \leqslant i \leqslant n}$ and observe that $G_{\alpha}^{n}(E)=\int_{E} h_{\alpha}^{n}(t) \mathrm{d} t$ for $E \in \Sigma$ (the Bochner integral).
(i) From [4], Theorem 1, page 152, and Proposition 11, page 4, we have

$$
\left\|U_{\alpha}^{n}\right\|=\left\|G_{\alpha}^{n}\right\|([0,1])=\sup _{\left\|y^{*}\right\| \leqslant 1}\left|y^{*} \circ G_{\alpha}^{n}\right|([0,1])=\sup _{\left\|y^{*}\right\| \leqslant 1} \int_{0}^{1}\left|\left\langle y^{*}, h_{\alpha}^{n}(t)\right\rangle\right| \mathrm{d} t
$$

because $\left(y^{*} \circ G_{\alpha}^{n}\right)(E)=\int_{E}\left\langle y^{*}, h_{\alpha}^{n}(t)\right\rangle \mathrm{d} t$ and $\left|y^{*} \circ G_{\alpha}^{n}\right|([0,1])=\int_{0}^{1}\left|\left\langle y^{*}, h_{\alpha}^{n}(t)\right\rangle\right| \mathrm{d} t$. However, for any $y^{*}=\left(\xi_{i}\right)_{1 \leqslant i \leqslant n} \in\left(l_{p}^{n}\right)^{*}=l_{p^{*}}^{n}$ we have $\left\langle y^{*}, h_{\alpha}^{n}(t)\right\rangle=\sum_{i=1}^{n} \xi_{i} \alpha_{i} r_{i}(t)$ and by Khinchin's inequality $2^{-1 / 2}\left(\sum_{i=1}^{n}\left|\xi_{i} \alpha_{i}\right|^{2}\right)^{1 / 2} \leqslant \int_{0}^{1}\left|\left\langle y^{*}, h_{\alpha}^{n}(t)\right\rangle\right| \mathrm{d} t$, hence $2^{-1 / 2}\left\|M_{\alpha}\right\| \leqslant\left\|G_{\alpha}^{n}\right\|([0,1])$, where $M_{\alpha}: l_{p^{*}}^{n} \rightarrow l_{2}^{n}$ is the multiplication operator. Thus we have shown that $2^{-1 / 2}\left\|M_{\alpha}: l_{p^{*}}^{n} \rightarrow l_{2}^{n}\right\| \leqslant\left\|U_{\alpha}^{n}\right\|$. Let us note that always $\left\|U_{\alpha}^{n}\right\| \leqslant \pi_{2}\left(U_{\alpha}^{n}\right)$. Further, $U_{\alpha}^{n}: C[0,1] \stackrel{J}{\hookrightarrow} L_{2}[0,1] \xrightarrow{R} l_{2}^{n} \xrightarrow{M_{\rho}} l_{p}^{n}$ is a factorization of U_{α}^{n}, where J is the canonical inclusion and $R(f)=\left(\int_{0}^{1} f(t) r_{i}(t) \mathrm{d} t\right)_{1 \leqslant i \leqslant n}$. Since J is 2-summing with $\pi_{2}(J)=1$ and $\|R\|=1$, we deduce that $\pi_{2}\left(U_{\alpha}^{n}\right) \leqslant\left\|M_{\alpha}: l_{2}^{n} \rightarrow l_{p}^{n}\right\|$. Now, as is well known, $\left\|M_{\alpha}: l_{p^{*}}^{n} \rightarrow l_{2}^{n}\right\|=\left\|M_{\alpha}: l_{2}^{n} \rightarrow l_{p}^{n}\right\|=\|\alpha\|_{r}$ if $1 \leqslant p<2$, where $1 / p=1 / 2+1 / r$ and $\left\|M_{\alpha}: l_{p^{*}}^{n} \rightarrow l_{2}^{n}\right\|=\left\|M_{\alpha}: l_{2}^{n} \rightarrow l_{p}^{n}\right\|=\max _{1 \leqslant i \leqslant n}\left|\alpha_{i}\right|=\|\alpha\|_{\infty}$ if $2 \leqslant p \leqslant \infty$, see [1], page 218, and the proof of (i) is finished.
(ii) From [4], Theorem 3, page 162, $\pi_{1}\left(U_{\alpha}^{n}\right)=\left|G_{\alpha}^{n}\right|([0,1])=\int_{0}^{1}\left\|h_{\alpha}^{n}(t)\right\|_{p} \mathrm{~d} t=\|\alpha\|_{p}$.

In the sequel the technique named Average of a finite number of elements, introduced in [7], [9] is used to construct a useful kind of operators. Let us now fix some notation and recall this concept.

Let n be a natural number. For $\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \mathbb{K}^{n}$ we define the finite system denoted by Average ($\lambda_{i}: 1 \leqslant i \leqslant n$) as being the system with 2^{n} elements obtained by arranging in the lexicographical order of $D_{n}:=\{-1,1\}^{n}$ the elements $\varepsilon_{1} \lambda_{1}+\ldots+$ $\varepsilon_{n} \lambda_{n}$ for $\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right) \in D_{n}$. (On $\{-1,1\}$ we consider the natural order). Thus, as sets we have

$$
\text { Average }\left(\lambda_{i}: 1 \leqslant i \leqslant n\right)=\left\{\varepsilon_{1} \lambda_{1}+\ldots+\varepsilon_{n} \lambda_{n}:\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right) \in D_{n}\right\} .
$$

Let us note that if $\left(\lambda_{i}\right)_{1 \leqslant i \leqslant n} \in \mathbb{K}^{n}$ and $\left(e_{\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right)}\right)_{\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right) \in D_{n}}$ are the standard unit vectors in $\mathbb{K}^{2^{n}}$ ordered in the lexicographical order of D_{n}, then the following equality in $\mathbb{K}^{2^{n}}$ holds:

$$
\begin{equation*}
\text { Average }\left(\lambda_{i}: 1 \leqslant i \leqslant n\right)=\sum_{\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right) \in D_{n}}\left(\varepsilon_{1} \lambda_{1}+\ldots+\varepsilon_{n} \lambda_{n}\right) e_{\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right)} \tag{1}
\end{equation*}
$$

If $1 \leqslant p<\infty$, by Khinchin's inequality we have

$$
\begin{align*}
A_{p}\left\|\left(\lambda_{1}, \ldots, \lambda_{n}\right)\right\|_{2} & \leqslant \| \text { Average }\left(\frac{1}{2^{n / p}} \lambda_{i}: 1 \leqslant i \leqslant n\right) \|_{p} \tag{2}\\
& =\left(\frac{1}{2^{n}} \sum_{\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right) \in D_{n}}\left|\varepsilon_{1} \lambda_{1}+\ldots+\varepsilon_{n} \lambda_{n}\right|^{p}\right)^{1 / p} \\
& \leqslant B_{p}\left\|\left(\lambda_{1}, \ldots, \lambda_{n}\right)\right\|_{2} .
\end{align*}
$$

Above and in the sequel A_{p}, B_{p} are Khinchin's constants (see [3]).
Lemma 2. Let $1 \leqslant p<\infty, n \in \mathbb{N}, \alpha=\left(\alpha_{i}\right)_{1 \leqslant i \leqslant n} \in \mathbb{K}^{n}$ and let $A v_{\alpha}^{n}$: $C[0,1] \rightarrow l_{p}^{2^{n}}$ be the operator defined by

$$
A v_{\alpha}^{n}(f)=\text { Average }\left(\frac{\alpha_{i}}{2^{n / p}} \int_{0}^{1} f(t) r_{i}(t) \mathrm{d} t: 1 \leqslant i \leqslant n\right)
$$

Then:
(i) $A_{p} 2^{-1 / 2}\|\alpha\|_{\infty} \leqslant \pi_{2}\left(A v_{\alpha}^{n}\right) \leqslant B_{p}\|\alpha\|_{\infty}$.
(ii) $A_{p}\|\alpha\|_{2} \leqslant \pi_{1}\left(A v_{\alpha}^{n}\right) \leqslant B_{p}\|\alpha\|_{2}$.

Proof. Let $f \in C[0,1]$. From the relation (2) we have

$$
A_{p}\left\|U_{\alpha}^{n}(f)\right\|_{2} \leqslant\left\|A v_{\alpha}^{n}(f)\right\| \leqslant B_{p}\left\|U_{\alpha}^{n}(f)\right\|_{2}
$$

where $U_{\alpha}^{n}: C[0,1] \rightarrow l_{2}^{n}$ is defined by $U_{\alpha}^{n}(f)=\left(\alpha_{i} \int_{0}^{1} f(t) r_{i}(t) \mathrm{d} t\right)_{1 \leqslant i \leqslant n}$. Thus

$$
A_{p} \pi_{2}\left(U_{\alpha}^{n}\right) \leqslant \pi_{2}\left(A v_{\alpha}^{n}\right) \leqslant B_{p} \pi_{2}\left(U_{\alpha}^{n}\right) \quad \text { and } \quad A_{p} \pi_{1}\left(U_{\alpha}^{n}\right) \leqslant \pi_{1}\left(A v_{\alpha}^{n}\right) \leqslant B_{p} \pi_{1}\left(U_{\alpha}^{n}\right)
$$

The conclusion follows, because in this case, by Lemma 1, $2^{-1 / 2}\|\alpha\|_{\infty} \leqslant \pi_{2}\left(U_{\alpha}^{n}\right) \leqslant$ $\|\alpha\|_{\infty}$ and $\pi_{1}\left(U_{\alpha}^{n}\right)=\|\alpha\|_{2}$.

We need also the second average which we describe next. Let n be a natural number. Let us note that if $\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \mathbb{K}^{n}$ then

$$
\begin{equation*}
c_{\nwarrow} \sum_{i=1}^{n}\left|\lambda_{i}\right| \leqslant \| \text { Average }\left(\lambda_{i}: 1 \leqslant i \leqslant n\right) \|_{\infty} \leqslant \sum_{i=1}^{n}\left|\lambda_{i}\right| \tag{3}
\end{equation*}
$$

where $c_{\mathbb{K}}=1$ if $\mathbb{K}:=\mathbb{R} ; c_{\mathbb{K}}=1 / 2$ if $\mathbb{K}:=\mathbb{C}$ (in this case consider the real and the imaginary part).

For $\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \mathbb{K}^{n}$ let us denote the 2^{n} elements of the set Average $\left(\lambda_{i}: 1 \leqslant\right.$ $i \leqslant n)$ by $\left\{\beta_{1}, \beta_{2}, \ldots, \beta_{2^{n}}\right\}$ and apply the same procedure; we define

$$
\begin{aligned}
\text { Saverage }\left(\lambda_{i}: 1 \leqslant i \leqslant n\right): & =\text { Average }\left(\beta_{i}: 1 \leqslant i \leqslant 2^{n}\right) \\
& =\left\{\varepsilon_{1} \beta_{1}+\ldots+\varepsilon_{2^{n}} \beta_{2^{n}}:\left(\varepsilon_{1}, \ldots, \varepsilon_{2^{n}}\right) \in D_{2^{n}}\right\} \subset \mathbb{K}^{2^{2^{n}}}
\end{aligned}
$$

From the relation (3) we have

$$
\frac{c_{K}}{2^{n}}\left\|\left(\beta_{1}, \ldots, \beta_{2^{n}}\right)\right\|_{1} \leqslant \frac{1}{2^{n}} \| \text { Saverage }\left(\lambda_{i}: 1 \leqslant i \leqslant n\right)\left\|_{\infty} \leqslant \frac{1}{2^{n}}\right\|\left(\beta_{1}, \ldots, \beta_{2^{n}}\right) \|_{1}
$$

and since by Khinchin's inequality

$$
\begin{aligned}
\frac{1}{\sqrt{2}}\left\|\left(\lambda_{1}, \ldots, \lambda_{n}\right)\right\|_{2} & \leqslant \frac{1}{2^{n}} \sum_{i=1}^{2^{n}}\left|\beta_{i}\right|=\frac{1}{2^{n}} \sum_{\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right) \in D_{n}}\left|\varepsilon_{1} \lambda_{1}+\ldots+\varepsilon_{n} \lambda_{n}\right| \\
& \leqslant\left\|\left(\lambda_{1}, \ldots, \lambda_{n}\right)\right\|_{2}
\end{aligned}
$$

we get
(4) $\quad \frac{c_{\mathbb{K}}}{\sqrt{2}}\left\|\left(\lambda_{1}, \ldots, \lambda_{n}\right)\right\|_{2} \leqslant \frac{1}{2^{n}} \|$ Saverage $\left(\lambda_{i}: 1 \leqslant i \leqslant n\right)\left\|_{\infty} \leqslant\right\|\left(\lambda_{1}, \ldots, \lambda_{n}\right) \|_{2}$.

Lemma 3. (a) Let $n \in \mathbb{N}, \alpha=\left(\alpha_{i}\right)_{1 \leqslant i \leqslant n} \in \mathbb{K}^{n}$ and let $A v_{\alpha}^{n}: C[0,1] \rightarrow l_{\infty}^{2^{n}}$ be the operator defined by

$$
A v_{\alpha}^{n}(f)=\operatorname{Average}\left(\alpha_{i} \int_{0}^{1} f(t) r_{i}(t) \mathrm{d} t: 1 \leqslant i \leqslant n\right) .
$$

Then:
(i) $c_{\nwarrow} 2^{-1 / 2}\|\alpha\|_{2} \leqslant \pi_{2}\left(A v_{\alpha}^{n}\right) \leqslant\|\alpha\|_{2}$.
(ii) $c_{\text {K }}\|\alpha\|_{1} \leqslant \pi_{1}\left(A v_{\alpha}^{n}\right) \leqslant\|\alpha\|_{1}$.
(b) Let $n \in \mathbb{N}, \alpha=\left(\alpha_{i}\right)_{1 \leqslant i \leqslant n} \in \mathbb{K}^{n}$ and let $\operatorname{Sav}_{\alpha}^{n}: C[0,1] \rightarrow l_{\infty}^{2^{2^{n}}}$ be the operator defined by

$$
\operatorname{Sav}_{\alpha}^{n}(f):=\text { Saverage }\left(\frac{1}{2^{n}} \alpha_{i} \int_{0}^{1} f(t) r_{i}(t) \mathrm{d} t: 1 \leqslant i \leqslant n\right)
$$

Then:
(i) $c_{\mathbb{K}} 2^{-1}\|\alpha\|_{\infty} \leqslant \pi_{2}\left(\operatorname{Sav}_{\alpha}^{n}\right) \leqslant\|\alpha\|_{\infty}$.
(ii) $c_{\nwarrow} 2^{-1 / 2}\|\alpha\|_{2} \leqslant \pi_{1}\left(\operatorname{Sav}_{\alpha}^{n}\right) \leqslant\|\alpha\|_{2}$.

Proof. (a) Let $f \in C[0,1]$. From the relation (3) we have

$$
c_{\mathbb{K}}\left\|U_{\alpha}^{n}(f)\right\|_{1} \leqslant\left\|A v_{\alpha}^{n}(f)\right\|_{\infty} \leqslant\left\|U_{\alpha}^{n}(f)\right\|_{1}
$$

where $U_{\alpha}^{n}: C[0,1] \rightarrow l_{1}^{n}$ is defined by $U_{\alpha}^{n}(f)=\left(\alpha_{i} \int_{0}^{1} f(t) r_{i}(t) \mathrm{d} t\right)_{1 \leqslant i \leqslant n}$. Thus, easily,

$$
c_{\nwarrow} \pi_{2}\left(U_{\alpha}^{n}\right) \leqslant \pi_{2}\left(A v_{\alpha}^{n}\right) \leqslant \pi_{2}\left(U_{\alpha}^{n}\right) \text { and } c_{\nwarrow} \pi_{1}\left(U_{\alpha}^{n}\right) \leqslant \pi_{2}\left(A v_{\alpha}^{n}\right) \leqslant \pi_{1}\left(U_{\alpha}^{n}\right) .
$$

The conclusion follows, because in this case, by Lemma 1, $2^{-1 / 2}\|\alpha\|_{2} \leqslant \pi_{2}\left(U_{\alpha}^{n}\right) \leqslant$ $\|\alpha\|_{2}$ and $\pi_{1}\left(U_{\alpha}^{n}\right)=\|\alpha\|_{1}$.
(b) Let $f \in C[0,1]$. From the relation (4) we have

$$
\frac{c_{\mathbb{K}}}{\sqrt{2}}\left\|U_{\alpha}^{n}(f)\right\|_{2} \leqslant\left\|\operatorname{Sav}_{\alpha}^{n}(f)\right\|_{\infty} \leqslant\left\|U_{\alpha}^{n}(f)\right\|_{2}
$$

where $U_{\alpha}^{n}: C[0,1] \rightarrow l_{2}^{n}$ is defined by $U_{\alpha}^{n}(f)=\left(\alpha_{i} \int_{0}^{1} f(t) r_{i}(t) \mathrm{d} t\right)_{1 \leqslant i \leqslant n}$. Thus

$$
\frac{c_{\mathbb{K}}}{\sqrt{2}} \pi_{2}\left(U_{\alpha}^{n}\right) \leqslant \pi_{2}\left(\operatorname{Sav}_{\alpha}^{n}\right) \leqslant \pi_{2}\left(U_{\alpha}^{n}\right) ; \quad \frac{c_{\mathbb{K}}}{\sqrt{2}} \pi_{1}\left(U_{\alpha}^{n}\right) \leqslant \pi_{1}\left(\operatorname{Sav}_{\alpha}^{n}\right) \leqslant \pi_{1}\left(U_{\alpha}^{n}\right) .
$$

The conclusion follows, because in this case, by Lemma $1,2^{-1 / 2}\|\alpha\|_{\infty} \leqslant \pi_{2}\left(U_{\alpha}^{n}\right) \leqslant$ $\|\alpha\|_{\infty}$ and $\pi_{1}\left(U_{\alpha}^{n}\right)=\|\alpha\|_{2}$.

The results

In the next theorem, which is the main result of this paper, we show how the local structure of the spaces $\Pi_{2}(C[0,1], X)$ and $\Pi_{1}(C[0,1], X)$ depends on the local structure of X.

Theorem 4. Let $1 \leqslant p \leqslant \infty, 1<\lambda<\infty$ and let X be a Banach space which contains l_{p}^{n} 's λ-uniformly. Then:
(i) For $1 \leqslant p<2, \Pi_{2}(C[0,1], X)$ contains $\lambda \sqrt{2}$-uniformly copies of l_{r}^{n} 's where $1 / p=1 / 2+1 / r$.
(ii) For $2 \leqslant p \leqslant \infty, \Pi_{2}(C[0,1], X)$ contains $\lambda \sqrt{2}$-uniformly copies of l_{∞}^{n} 's.
(iii) For $1 \leqslant p<\infty, \Pi_{2}(C[0,1], X)$ contains $\lambda B_{p} \sqrt{2} / A_{p}$-uniformly copies of l_{∞}^{n} 's.
(iv) $\Pi_{1}(C[0,1], X)$ contains λ-uniformly copies of l_{p}^{n},s.
(v) For $1 \leqslant p<\infty, \Pi_{1}(C[0,1], X)$ contains $\lambda B_{p} / A_{p}$-uniformly copies of l_{2}^{n} 's.
(vi) For $1 \leqslant p<\infty$, the spaces $\Pi_{2}(C[0,1], X)$ and $\Pi_{1}(C[0,1], X)$ are distinct; in particular, $\Pi_{2}(C[0,1], X) \neq \mathcal{N}(C[0,1], X)$.

Proof. (i), (ii) and (iv). Let $n \in \mathbb{N}$ be arbitrary. By hypothesis there exists a bounded linear operator $J_{n}: l_{p}^{n} \rightarrow X$ such that

$$
\begin{equation*}
\|\alpha\|_{p} \leqslant\left\|J_{n}(\alpha)\right\|_{X} \leqslant \lambda\|\alpha\|_{p}, \quad \alpha \in l_{p}^{n} \tag{5}
\end{equation*}
$$

Let us define $A_{n}: \mathbb{K}^{n} \rightarrow L(C[0,1], X)$ by $A_{n}(\alpha)=J_{n} \circ U_{\alpha}^{n}$, where $U_{\alpha}^{n}: C[0,1] \rightarrow l_{p}^{n}$ is the operator from Lemma 1. Though not needed in the sequel, let us note that if $\alpha=\left(\alpha_{i}\right)_{1 \leqslant i \leqslant n} \in \mathbb{K}^{n}$ and $f \in C[0,1]$ then

$$
A_{n}(\alpha)(f)=\sum_{i=1}^{n} \alpha_{i}\left(\int_{0}^{1} f(t) r_{i}(t) \mathrm{d} t\right) J_{n}\left(e_{i}\right) .
$$

Let $\alpha \in \mathbb{K}^{n}$. For every $f \in C[0,1]$ by (5) we have

$$
\left\|U_{\alpha}^{n}(f)\right\|_{p} \leqslant\left\|\left[A_{n}(\alpha)\right](f)\right\|_{X}=\left\|J_{n}\left(U_{\alpha}^{n}(f)\right)\right\|_{X} \leqslant \lambda\left\|U_{\alpha}^{n}(f)\right\|_{p}
$$

and by the definition of p-summing operators we deduce that (6) $\quad \pi_{2}\left(U_{\alpha}^{n}\right) \leqslant \pi_{2}\left(A_{n}(\alpha)\right) \leqslant \lambda \pi_{2}\left(U_{\alpha}^{n}\right) \quad$ and $\quad \pi_{1}\left(U_{\alpha}^{n}\right) \leqslant \pi_{1}\left(A_{n}(\alpha)\right) \leqslant \lambda \pi_{1}\left(U_{\alpha}^{n}\right)$.

From (6) and Lemma 1 we obtain

$$
\begin{aligned}
\|\alpha\|_{r} & \leqslant \pi_{2}\left(\sqrt{2} A_{n}(\alpha)\right) \leqslant \lambda \sqrt{2}\|\alpha\|_{r} \quad \text { if } 1 \leqslant p<2, \text { where } \frac{1}{p}=\frac{1}{2}+\frac{1}{r} \\
\|\alpha\|_{\infty} & \leqslant \pi_{2}\left(\sqrt{2} A_{n}(\alpha)\right) \leqslant \lambda \sqrt{2}\|\alpha\|_{\infty} \quad \text { if } 2 \leqslant p<\infty \\
\|\alpha\|_{p} & \leqslant \pi_{1}\left(A_{n}(\alpha)\right) \leqslant \lambda\|\alpha\|_{p}
\end{aligned}
$$

which ends the proof of (i), (ii) and (iv).
(iii) and (v). Let $n \in \mathbb{N}$ be arbitrary. By hypothesis there exists a bounded linear operator $J_{2^{n}}: l_{p}^{2^{n}} \rightarrow X$ such that

$$
\begin{equation*}
\|\xi\|_{p} \leqslant\left\|J_{2^{n}}(\xi)\right\|_{X} \leqslant \lambda\|\xi\|_{p}, \quad \xi \in l_{p}^{2^{n}} \tag{7}
\end{equation*}
$$

We define $A v_{n}: \mathbb{K}^{n} \rightarrow L(C[0,1], X)$ by $A v_{n}(\alpha)=J_{2^{n}} \circ A v_{\alpha}^{n}$, where $A v_{\alpha}^{n}: C[0,1] \rightarrow l_{p}^{2^{n}}$ is the operator from Lemma 2. Again, though not needed in the sequel, let us note that if $\alpha=\left(\alpha_{i}\right)_{1 \leqslant i \leqslant n} \in \mathbb{K}^{n}$ and $f \in C[0,1]$ we have

$$
\begin{aligned}
& {\left[A v_{n}(\alpha)\right](f)=\frac{1}{2^{n / p}} \sum_{\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right) \in D_{n}}\left(\varepsilon_{1} \alpha_{1} \int_{0}^{1} f(t) r_{1}(t) \mathrm{d} t+\ldots\right.} \\
&\left.+\varepsilon_{n} \alpha_{n} \int_{0}^{1} f(t) r_{n}(t) \mathrm{d} t\right) J_{2^{n}}\left(e_{\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right)}\right)
\end{aligned}
$$

Let $\alpha \in \mathbb{K}^{n}$. For every $f \in C[0,1]$ by (7) we have

$$
\left\|A v_{\alpha}^{n}(f)\right\|_{p} \leqslant\left\|\left[A v_{n}(\alpha)\right](f)\right\|_{X}=\left\|J_{2^{n}}\left(A v_{\alpha}^{n}(f)\right)\right\|_{X} \leqslant \lambda\left\|A v_{\alpha}^{n}(f)\right\|_{p}
$$

and by the definition of p-summing operators we deduce that
(8) $\pi_{2}\left(A v_{\alpha}^{n}\right) \leqslant \pi_{2}\left(A v_{n}(\alpha)\right) \leqslant \lambda \pi_{2}\left(A v_{\alpha}^{n}\right)$ and $\pi_{1}\left(A v_{\alpha}^{n}\right) \leqslant \pi_{1}\left(A v_{n}(\alpha)\right) \leqslant \lambda \pi_{1}\left(A v_{\alpha}^{n}\right)$.

Since by Lemma 2

$$
\frac{A_{p}}{\sqrt{2}}\|\alpha\|_{\infty} \leqslant \pi_{2}\left(A v_{n}(\alpha)\right) \leqslant B_{p}\|\alpha\|_{\infty} \quad \text { and } \quad A_{p}\|\alpha\|_{2} \leqslant \pi_{1}\left(A v_{n}(\alpha)\right) \leqslant B_{p}\|\alpha\|_{2}
$$

from (8) we obtain

$$
\|\alpha\|_{\infty} \leqslant \pi_{2}\left(\frac{\sqrt{2}}{A_{p}} A v_{n}(\alpha)\right) \leqslant \frac{\lambda B_{p} \sqrt{2}}{A_{p}}\|\alpha\|_{\infty} ; \quad\|\alpha\|_{2} \leqslant \pi_{1}\left(\frac{A v_{n}(\alpha)}{A_{p}}\right) \leqslant \frac{\lambda B_{p}}{A_{p}}\|\alpha\|_{2}
$$

which ends the proof of (iii) and (v).
(vi) If $\Pi_{2}(C[0,1], X)=\Pi_{1}(C[0,1], X)$, then by the open mapping theorem it follows that there exists $C>0$ such that $\pi_{1}(T) \leqslant C \pi_{2}(T)$ for all $T \in \Pi_{1}(C[0,1], X)$. In particular, $\pi_{1}\left(A_{n}(\alpha)\right) \leqslant C \pi_{2}\left(A_{n}(\alpha)\right)$ for all natural numbers n and all $\alpha \in \mathbb{K}^{n}$. By (i), (ii) and (iv) for all natural numbers n and all $\alpha \in \mathbb{K}^{n}$ we have $\|\alpha\|_{p} \leqslant C\|\alpha\|_{r}$ if $1 \leqslant p<2$, where $1 / p=1 / 2+1 / r$, or $\|\alpha\|_{p} \leqslant C\|\alpha\|_{\infty}$ if $2 \leqslant p<\infty$. Taking

$$
\alpha=(\underbrace{1, \ldots, 1}_{n \text {-times }})
$$

we get that for all natural numbers n we have $n \leqslant C^{2}$ if $1 \leqslant p<2$, or $n \leqslant C^{p}$ if $2 \leqslant p<\infty$, which is impossible. Let us note that a contradiction can be obtained if we use (iii) or (v). If $\Pi_{2}(C[0,1], X)=\mathcal{N}(C[0,1], X)$ then, since $\mathcal{N}(C[0,1], X) \subseteq$ $\Pi_{1}(C[0,1], X) \subseteq \Pi_{2}(C[0,1], X)$, it follows that $\Pi_{1}(C[0,1], X)=\Pi_{2}(C[0,1], X)$, which as we have shown above is impossible.

As a natural consequence of Theorem 4, we recover the folklore result that if X is an infinite-dimensional Banach space then the spaces $\Pi_{2}(C[0,1], X)$ and $\Pi_{1}(C[0,1], X)$ are distinct. This extends the well-known result that the spaces $\Pi_{2}(C[0,1], X)$ and $\mathcal{N}(C[0,1], X)$ are distinct, see [10], Theorem 4.2.

Corollary 5. Let X be an infinite dimensional Banach space. Then:
(i) $\Pi_{2}(C[0,1], X)$ contains $\lambda \sqrt{2}$-uniformly copies of l_{∞}^{n} 's for all $\lambda>1$.
(ii) $\Pi_{1}(C[0,1], X)$ contains λ-uniformly copies of l_{2}^{n} 's for all $\lambda>1$.
(iii) The spaces $\Pi_{2}(C[0,1], X)$ and $\Pi_{1}(C[0,1], X)$ are distinct; in particular, $\Pi_{2}(C[0,1], X) \neq \mathcal{N}(C[0,1], X)$.

Proof. Since X is infinite-dimensional, by the famous Dvoretzky theorem, see [3], Chapter 19, X contains l_{2}^{n} 's λ-uniformly for all $1<\lambda<\infty$. The statement follows by taking $p=2$ in Theorem 4 .

Let us note that for $p=\infty$ in Theorem 4 ((ii) and (iv)) it follows that if $1<\lambda<\infty$ and X is a Banach space which contains l_{∞}^{n} 's λ-uniformly, then $\Pi_{2}(C[0,1], X)$ contains $\lambda \sqrt{2}$-uniformly copies of l_{∞}^{n} 's and $\Pi_{1}(C[0,1], X)$ contains λ-uniformly copies of l_{∞}^{n} 's, so in this case, there is no distinction between these classes.

We prove now a natural completion of Theorem 4. It shows that for $p=\infty$ in Theorem 4 we have also a distinction if we use the first and the second average.

Theorem 6. Let $1<\lambda<\infty$ and let X be a Banach space which contains l_{∞}^{n} 's λ-uniformly. Then:
(i) $\Pi_{2}(C[0,1], X)$ contains $\lambda \sqrt{2}$-uniformly copies of l_{2}^{n},s in the real case $(2 \lambda \sqrt{2}$ uniformly copies of l_{2}^{n} 's in the complex case).
(ii) $\Pi_{1}(C[0,1], X)$ contains λ-uniformly copies of l_{1}^{n} 's in the real case (2λ-uniformly copies of l_{1}^{n} 's in the complex case).
(iii) $\Pi_{2}(C[0,1], X)$ contains 2λ-uniformly copies of l_{∞}^{n} 's in the real case (4 λ uniformly copies of l_{∞}^{n} 's in the complex case).
(iv) $\Pi_{1}(C[0,1], X)$ contains $\lambda \sqrt{2}$-uniformly copies of l_{2}^{n} 's in the real case $(2 \lambda \sqrt{2}$ uniformly copies of l_{2}^{n} 's in the complex case).

Proof. (i) and (ii). Let $n \in \mathbb{N}$ be arbitrary. By hypothesis there exists a bounded linear operator $J_{2^{n}}: l_{\infty}^{2^{n}} \rightarrow X$ such that

$$
\begin{equation*}
\|\xi\|_{\infty} \leqslant\left\|J_{2^{n}}(\xi)\right\|_{X} \leqslant \lambda\|\xi\|_{\infty}, \quad \xi \in l_{\infty}^{2^{n}} \tag{9}
\end{equation*}
$$

We define $A v_{n}: \mathbb{K}^{n} \rightarrow L(C[0,1], X)$ by $A v_{n}(\alpha)=J_{2^{n}} \circ A v_{\alpha}^{n}$, where $A v_{\alpha}^{n}: C[0,1] \rightarrow l_{\infty}^{2^{n}}$ is the operator from Lemma 3. Let us note (not used in the sequel) the explicit expression,

$$
\begin{aligned}
& {\left[A v_{n}(\alpha)\right](f)=\sum_{\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right) \in D_{n}}\left(\varepsilon_{1} \alpha_{1} \int_{0}^{1} f(t) r_{1}(t) \mathrm{d} t+\ldots\right.} \\
&\left.+\varepsilon_{n} \alpha_{n} \int_{0}^{1} f(t) r_{n}(t) \mathrm{d} t\right) J_{2^{n}}\left(e_{\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right)}\right)
\end{aligned}
$$

where $\alpha=\left(\alpha_{i}\right)_{1 \leqslant i \leqslant n} \in \mathbb{K}^{n}$ (see also the equality (1)). Let $\alpha \in \mathbb{K}^{n}$. For every $f \in C[0,1]$ by (9) we have

$$
\left\|A v_{\alpha}^{n}(f)\right\|_{\infty} \leqslant\left\|\left[A v_{n}(\alpha)\right](f)\right\|_{X}=\left\|J_{2^{n}}\left(A v_{\alpha}^{n}(f)\right)\right\|_{X} \leqslant \lambda\left\|A v_{\alpha}^{n}(f)\right\|_{\infty},
$$

and by the definition of p-summing operators we deduce that

$$
\begin{equation*}
\pi_{2}\left(A v_{\alpha}^{n}\right) \leqslant \pi_{2}\left(A v_{n}(\alpha)\right) \leqslant \lambda \pi_{2}\left(A v_{\alpha}^{n}\right) \tag{10}
\end{equation*}
$$

and

$$
\pi_{1}\left(A v_{\alpha}^{n}\right) \leqslant \pi_{1}\left(A v_{n}(\alpha)\right) \leqslant \lambda \pi_{1}\left(A v_{\alpha}^{n}\right) .
$$

Since by Lemma 3

$$
\frac{c_{\mathbb{K}}}{\sqrt{2}}\|\alpha\|_{2} \leqslant \pi_{2}\left(A v_{n}(\alpha)\right) \leqslant\|\alpha\|_{2} \quad \text { and } \quad c_{\mathbb{K}}\|\alpha\|_{1} \leqslant \pi_{1}\left(A v_{n}(\alpha)\right) \leqslant\|\alpha\|_{1},
$$

from (10) we obtain

$$
\|\alpha\|_{2} \leqslant \pi_{2}\left(\frac{\sqrt{2}}{c_{\nwarrow}} A v_{n}(\alpha)\right) \leqslant \frac{\lambda \sqrt{2}}{c_{\nwarrow}}\|\alpha\|_{2} \quad \text { and } \quad\|\alpha\|_{1} \leqslant \pi_{1}\left(\frac{A v_{n}(\alpha)}{c_{\nwarrow}}\right) \leqslant \frac{\lambda}{c_{K}}\|\alpha\|_{1}
$$

which ends the proof of (i) and (ii).
(iii) and (iv). Let $n \in \mathbb{N}$ be arbitrary. By hypothesis there exists a bounded linear operator $J_{2^{2^{n}}}: l_{\infty}^{2^{2^{n}}} \rightarrow X$ such that

$$
\begin{equation*}
\|\xi\|_{\infty} \leqslant\left\|J_{2^{2^{n}}}(\xi)\right\|_{X} \leqslant \lambda\|\xi\|_{\infty}, \quad \xi \in l_{\infty}^{2^{2^{n}}} \tag{11}
\end{equation*}
$$

We define $\operatorname{Sav}_{n}: \mathbb{K}^{n} \rightarrow L(C[0,1], X)$ by $\operatorname{Sav}_{n}(\alpha)=J_{2^{2 n}} \circ \operatorname{Sav}_{\alpha}^{n}$ where $\operatorname{Sav}_{\alpha}^{n}$: $C[0,1] \rightarrow l_{\infty}^{2^{2^{n}}}$ is the operator from Lemma 3. We leave for the interested reader to write the explicit expresion for $\left[\operatorname{Sav}_{n}(\alpha)\right](f)$, which again is not used in the sequel. Let $\alpha \in \mathbb{K}^{n}$. For every $f \in C[0,1]$ by (11) we have

$$
\left\|\operatorname{Sav}_{\alpha}^{n}(f)\right\|_{\infty} \leqslant\left\|\left[\operatorname{Sav}_{n}(\alpha)\right](f)\right\|_{X}=\left\|J_{2^{2 n}}\left(\operatorname{Sav}_{\alpha}^{n}(f)\right)\right\|_{X} \leqslant \lambda\left\|\operatorname{Sav}_{\alpha}^{n}(f)\right\|_{\infty}
$$

and by the definition of p-summing operators we deduce that

$$
\begin{equation*}
\pi_{2}\left(\operatorname{Sav}_{\alpha}^{n}\right) \leqslant \pi_{2}\left(\operatorname{Sav}_{n}(\alpha)\right) \leqslant \lambda \pi_{2}\left(\operatorname{Sav}_{\alpha}^{n}\right) \tag{12}
\end{equation*}
$$

and

$$
\pi_{1}\left(\operatorname{Sav}_{\alpha}^{n}\right) \leqslant \pi_{1}\left(\operatorname{Sav}_{n}(\alpha)\right) \leqslant \lambda \pi_{1}\left(\operatorname{Sav}_{\alpha}^{n}\right)
$$

Since by Lemma 3

$$
\frac{c_{\nwarrow}}{2}\|\alpha\|_{\infty} \leqslant \pi_{2}\left(\operatorname{Sav}_{n}(\alpha)\right) \leqslant\|\alpha\|_{\infty} \quad \text { and } \quad \frac{c_{\nwarrow}}{\sqrt{2}}\|\alpha\|_{2} \leqslant \pi_{1}\left(\operatorname{Sav}_{n}(\alpha)\right) \leqslant\|\alpha\|_{2},
$$

from (12) we obtain

$$
\|\alpha\|_{\infty} \leqslant \pi_{2}\left(\frac{2}{c_{K}} \operatorname{Sav}_{n}(\alpha)\right) \leqslant \frac{2 \lambda}{c_{\nwarrow}}\|\alpha\|_{\infty} \text { and }\|\alpha\|_{2} \leqslant \pi_{1}\left(\frac{\sqrt{2} \operatorname{Sav}_{n}(\alpha)}{c_{\nwarrow}}\right) \leqslant \frac{\lambda \sqrt{2}}{c_{\nwarrow}}\|\alpha\|_{2},
$$

which ends the proof of (iii) and (iv).
In [5] was shown that the space $\Pi_{1}(C[0,1], X)$ can be identified with the so called space $l_{1}^{\text {tree }}(X)$; we refer the reader to the paper [5] for the definition of this space and more details. From Theorems 4, 6 and Corollary 5 we get

Corollary 7. (a) Let $1 \leqslant p \leqslant \infty, 1<\lambda<\infty$ and let X be a Banach space which contains l_{p}^{n} 's λ-uniformly. Then:
(i) $l_{1}^{\text {tree }}(X)$ contains λ-uniformly copies of l_{p}^{n} 's.
(ii) For $1 \leqslant p<\infty, l_{1}^{\text {tree }}(X)$ contains $\lambda B_{p} / A_{p}$-uniformly copies of l_{2}^{n} 's.
(b) Let $1<\lambda<\infty$ and let X be a Banach space which contains l_{∞}^{n} 's λ-uniformly. Then:
(i) $l_{1}^{\text {tree }}(X)$ contains $\lambda \sqrt{2}$-uniformly copies of l_{1}^{n} 's in the real case ($2 \lambda \sqrt{2}$-uniformly copies of l_{1}^{n} 's in the complex case).
(ii) $l_{1}^{\text {tree }}(X)$ contains λ-uniformly copies of l_{2}^{n} 's in the real case (2λ-uniformly copies of l_{2}^{n} 's in the complex case).
(c) Let X be an infinite dimensional Banach space. Then $l_{1}^{\text {tree }}(X)$ contains λ uniformly copies of l_{2}^{n} 's for all $\lambda>1$.

Acknowledgement. We thank the referee for his/her constructive comments and remarks which have improved the quality of presentation.

References

[1] C. Costara, D. Popa: Exercises in Functional Analysis. Kluwer Texts in the Mathematical Sciences 26, Kluwer Academic Publishers Group, Dordrecht, 2003.
[2] A. Defant, K. Floret: Tensor Norms and Operator Ideals. North-Holland Mathematics
Studies 176, North-Holland Publishing, Amsterdam, 1993.
[3] J. Diestel, H. Jarchow, A. Tonge: Absolutely Summing Operators. Cambridge Studies in Advanced Mathematics 43, Cambridge University Press, Cambridge, 1995.
zbl MR doi
zbl MR doi
[4] J. Diestel, J. J. Uhl, Jr.: Vector Measures. Mathematical Surveys 15, American Mathematical Society, Providence, 1977.
zbl MR doi
[5] A. Lima, V. Lima, E. Oja: Absolutely summing operators on $C[0,1]$ as a tree space and the bounded approximation property. J. Funct. Anal. 259 (2010), 2886-2901.
zbl MR doi
[6] A. Pietsch: Operator Ideals. Mathematische Monographien 16, VEB Deutscher der Wissenschaften, Berlin, 1978.
zbl MR doi
zbl MR
[7] D. Popa: Examples of operators on $C[0,1]$ distinguishing certain operator ideals. Arch. Math. 88 (2007), 349-357.
zbl MR doi
[8] D. Popa: Khinchin's inequality, Dunford-Pettis and compact operators on the space $C([0,1], X)$. Proc. Indian Acad. Sci., Math. Sci. 117 (2007), 13-30.
zbl MR doi
[9] D. Popa: Averages and compact, absolutely summing and nuclear operators on $C(\Omega)$. J. Korean Math. Soc. 47 (2010), 899-924.
[10] M. A. Sofi: Factoring operators over Hilbert-Schmidt maps and vector measures. Indag. Math., New Ser. 20 (2009), 273-284.
zbl MR doi

Author's address: Dumitru Popa, Department of Mathematics, Ovidius University of Constanţa, Bd. Mamaia 124, 900527 Constanţa, Romania, e-mail: dpopa@univovidius.ro.

