COPIES OF l_p^{n} 'S UNIFORMLY IN THE SPACES $\Pi_2(C[0,1], X)$ AND $\Pi_1(C[0,1], X)$

DUMITRU POPA, Constanța

Received January 8, 2016. First published May 4, 2017.

Abstract. We study the presence of copies of l_p^n 's uniformly in the spaces $\Pi_2(C[0, 1], X)$ and $\Pi_1(C[0, 1], X)$. By using Dvoretzky's theorem we deduce that if X is an infinitedimensional Banach space, then $\Pi_2(C[0, 1], X)$ contains $\lambda\sqrt{2}$ -uniformly copies of l_{∞}^n 's and $\Pi_1(C[0, 1], X)$ contains λ -uniformly copies of l_2^n 's for all $\lambda > 1$. As an application, we show that if X is an infinite-dimensional Banach space then the spaces $\Pi_2(C[0, 1], X)$ and $\Pi_1(C[0, 1], X)$ are distinct, extending the well-known result that the spaces $\Pi_2(C[0, 1], X)$ and $\mathcal{N}(C[0, 1], X)$ are distinct.

Keywords: p-summing linear operators; copies of l_p^n 's uniformly; local structure of a Banach space; multiplication operator; average

MSC 2010: 46B07, 47B10, 47L20, 46B28

1. INTRODUCTION AND NOTATION

The main purpose of this paper is to study the presence of copies of l_p^n 's uniformly in the spaces $\Pi_2(C[0,1],X)$ and $\Pi_1(C[0,1],X)$. Let us fix some notation and concepts used below. The scalar field \mathbb{R} (or \mathbb{C}) is denoted by \mathbb{K} and if $n \in \mathbb{N}$, $1 \leq p \leq \infty$, then $l_p^n = (\mathbb{K}^n, \|\cdot\|_p)$, where $\|(\alpha_1, \ldots, \alpha_n)\|_p = \left(\sum_{i=1}^n |\alpha_i|^p\right)^{1/p}$ if $p < \infty$ and $\|(\alpha_1, \ldots, \alpha_n)\|_{\infty} = \max_{1 \leq i \leq n} |\alpha_i|$. By $(e_i)_{1 \leq i \leq n}$ we denote the standard unit vectors in \mathbb{K}^n , i.e. $e_i = (0, \ldots, 0, 1, 0, \ldots, 0)$. For $1 \leq p \leq \infty$ we write, as usual, p^* for the conjugate of p, i.e. $1/p + 1/p^* = 1$. If $\alpha = (\alpha_i)_{1 \leq i \leq n} \in \mathbb{K}^n$, $1 \leq p, q \leq \infty$, $M_\alpha \colon l_p^n \to l_q^n$ is the multiplication operator, i.e. $M_\alpha((\xi_i)_{1 \leq i \leq n}) \coloneqq (\alpha_i \xi_i)_{1 \leq i \leq n}$. By $r_n \colon [0,1] \to \mathbb{R}$, $r_n(t) = (-1)^{[2^n t]}$ we denote the Rademacher functions ([·] denotes the integer part) and C[0,1] is the space of all scalar-valued continuous functions on [0, 1] under the uniform norm.

DOI: 10.21136/CMJ.2017.0009-16

Let $1 \leq p \leq \infty$ and $1 < \lambda < \infty$. We say that a Banach space X contains l_p^n 's λ -uniformly or that X contains λ -uniformly copies of l_p^n if for every $n \in \mathbb{N}$ there exists a linear operator $J_n: l_p^n \to X$ such that

$$\|\alpha\|_p \leqslant \|J_n(\alpha)\|_X \leqslant \lambda \|\alpha\|_p, \quad \alpha \in l_p^n$$

(see [3], page 260). Let X, Y be Banach spaces and $1 \leq p < \infty$. A linear operator $T: X \to Y$ is *p*-summing if there exists a constant $C \ge 0$ such that for every $n \in \mathbb{N}, x_1, \ldots, x_n \in X$ the relation $\left(\sum_{i=1}^n ||T(x_i)||^p\right)^{1/p} \le C \sup_{\|x^*\| \le 1} \left(\sum_{i=1}^n |x^*(x_i)|^p\right)^{1/p}$ holds and the *p*-summing norm of T is defined by $\pi_p(T) := \min\{C: C \text{ as above}\}$. We denote by $\Pi_p(X, Y)$ the class of all *p*-summing operators from X into Y (see [2], [3], [4], [6]). Let X and Y be Banach spaces. If A is a set, the notation $(x_n)_{n \in \mathbb{N}} \subset A$ means that $x_n \in A$ for every $n \in \mathbb{N}$. A bounded linear operator $T: X \to Y$ is called nuclear if there exist $(x_n^*)_{n \in \mathbb{N}} \subset X^*, (y_n)_{n \in \mathbb{N}} \subset Y$ such that $\sum_{n=1}^{\infty} \|x_n^*\| \|y_n\| < \infty$ and $T(x) = \sum_{n=1}^{\infty} x^*(x_n) x$ for $n \in \mathbb{N}$ is a parameterized a parameter.

 $T(x) = \sum_{n=1}^{\infty} x_n^*(x) y_n$ for $x \in X$; such a representation is called a *nuclear represen-*

tation of T and the nuclear norm of T is defined by $||T||_{\text{nuc}} := \inf \left\{ \sum_{n=1}^{\infty} ||x_n^*|| ||y_n|| \right\}$, where the infimum is taken over all the nuclear representations of T. We denote by $\mathcal{N}(X,Y)$ the space of all nuclear operators from X into Y (see [2], [3], [4], [6]). In [10], Theorem 4.2, it was shown that, if X is an infinite-dimensional Banach space, then $\mathcal{N}(C[0,1],X) \neq \Pi_2(C[0,1],X)$. As a natural consequence of our results, we recover the folklore result that if X is an infinite dimensional Banach space, then $\Pi_1(C[0,1],X) \neq \Pi_2(C[0,1],X)$, and hence $\mathcal{N}(C[0,1],X) \neq \Pi_2(C[0,1],X)$, see Corollary 1.

All notation and terminology, not otherwise explained, are as in [2], [3], [4], [6].

PRELIMINARY RESULTS

The next Lemma is essentially well-known (see [8], Lemma 10).

Lemma 1. Let $1 \leq p \leq \infty$, $n \in \mathbb{N}$, $\alpha = (\alpha_i)_{1 \leq i \leq n} \in \mathbb{K}^n$ and let $U_{\alpha}^n \colon C[0,1] \to l_p^n$ be the operator defined by $U_{\alpha}^n(f) = (\alpha_i \int_0^1 f(t)r_i(t) dt)_{1 \leq i \leq n}$. Then:

- (i) $2^{-1/2} \|\alpha\|_r \leq \|U_{\alpha}^n\| \leq \pi_2(U_{\alpha}^n) \leq \|\alpha\|_r$ if $1 \leq p < 2$, where 1/p = 1/2 + 1/r and $2^{-1/2} \|\alpha\|_{\infty} \leq \|U_{\alpha}^n\| \leq \pi_2(U_{\alpha}^n) \leq \|\alpha\|_{\infty}$ if $2 \leq p \leq \infty$.
- (ii) $\pi_1(U_{\alpha}^n) = \|\alpha\|_p$.

Proof. The representing measure of U_{α}^n is $G_{\alpha}^n \colon \Sigma \to l_p^n$ defined by $G_{\alpha}^n(E) := \left(\alpha_i \int_E r_i(t) dt\right)_{1 \leq i \leq n}$, where Σ is the σ -algebra of all borelian subsets of [0, 1], see [4],

Theorem 1, page 152. Let $h_{\alpha}^n \colon [0,1] \to l_p^n$ be given by $h_{\alpha}^n(t) = (\alpha_i r_i(t))_{1 \leq i \leq n}$ and observe that $G_{\alpha}^n(E) = \int_E h_{\alpha}^n(t) \, dt$ for $E \in \Sigma$ (the Bochner integral).

(i) From [4], Theorem 1, page 152, and Proposition 11, page 4, we have

$$||U_{\alpha}^{n}|| = ||G_{\alpha}^{n}||([0,1]) = \sup_{||y^{*}|| \le 1} |y^{*} \circ G_{\alpha}^{n}|([0,1]) = \sup_{||y^{*}|| \le 1} \int_{0}^{1} |\langle y^{*}, h_{\alpha}^{n}(t) \rangle| dt$$

because $(y^* \circ G_{\alpha}^n)(E) = \int_E \langle y^*, h_{\alpha}^n(t) \rangle \, dt$ and $|y^* \circ G_{\alpha}^n|([0,1]) = \int_0^1 |\langle y^*, h_{\alpha}^n(t) \rangle| \, dt$. However, for any $y^* = (\xi_i)_{1 \leq i \leq n} \in (l_p^n)^* = l_p^n$ we have $\langle y^*, h_{\alpha}^n(t) \rangle = \sum_{i=1}^n \xi_i \alpha_i r_i(t)$ and by Khinchin's inequality $2^{-1/2} \Big(\sum_{i=1}^n |\xi_i \alpha_i|^2 \Big)^{1/2} \leq \int_0^1 |\langle y^*, h_{\alpha}^n(t) \rangle| \, dt$, hence $2^{-1/2} ||M_{\alpha}|| \leq ||G_{\alpha}^n||([0,1])$, where $M_{\alpha} \colon l_{p^*}^n \to l_2^n$ is the multiplication operator. Thus we have shown that $2^{-1/2} ||M_{\alpha} \colon l_{p^*}^n \to l_2^n|| \leq ||U_{\alpha}^n||$. Let us note that always $||U_{\alpha}^n|| \leq \pi_2(U_{\alpha}^n)$. Further, $U_{\alpha}^n \colon C[0,1] \xrightarrow{i} L_2[0,1] \xrightarrow{R} l_2^n \xrightarrow{M_{\alpha}} l_p^n$ is a factorization of U_{α}^n , where J is the canonical inclusion and $R(f) = \left(\int_0^1 f(t)r_i(t) \, dt\right)_{1 \leq i \leq n}$. Since J is 2-summing with $\pi_2(J) = 1$ and ||R|| = 1, we deduce that $\pi_2(U_{\alpha}^n) \leq ||M_{\alpha} \colon l_2^n \to l_p^n||$. Now, as is well known, $||M_{\alpha} \colon l_{p^*}^n \to l_2^n|| = ||M_{\alpha} \colon l_2^n \to l_p^n|| = ||\alpha||_r$ if $1 \leq p < 2$, where 1/p = 1/2 + 1/r and $||M_{\alpha} \colon l_{p^*}^n \to l_2^n|| = ||M_{\alpha} \colon l_2^n \to l_p^n|| = \max_{1 \leq i \leq n} |\alpha_i| = ||\alpha||_{\infty}$ if $2 \leq p \leq \infty$, see [1], page 218, and the proof of (i) is finished. (ii) From [4]. Theorem 3, page 162, $\pi_i(U^n) = |C^n|([0, 1]) = \int_0^1 ||h^n(t)||$, $dt = ||\alpha||_r$

(ii) From [4], Theorem 3, page 162, $\pi_1(U_{\alpha}^n) = |G_{\alpha}^n|([0,1]) = \int_0^1 \|h_{\alpha}^n(t)\|_p \, \mathrm{d}t = \|\alpha\|_p.$

In the sequel the technique named Average of a finite number of elements, introduced in [7], [9] is used to construct a useful kind of operators. Let us now fix some notation and recall this concept.

Let *n* be a natural number. For $(\lambda_1, \ldots, \lambda_n) \in \mathbb{K}^n$ we define the finite system denoted by Average $(\lambda_i: 1 \leq i \leq n)$ as being the system with 2^n elements obtained by arranging in the lexicographical order of $D_n := \{-1, 1\}^n$ the elements $\varepsilon_1 \lambda_1 + \ldots + \varepsilon_n \lambda_n$ for $(\varepsilon_1, \ldots, \varepsilon_n) \in D_n$. (On $\{-1, 1\}$ we consider the natural order). Thus, as sets we have

Average
$$(\lambda_i: 1 \leq i \leq n) = \{\varepsilon_1\lambda_1 + \ldots + \varepsilon_n\lambda_n: (\varepsilon_1, \ldots, \varepsilon_n) \in D_n\}.$$

Let us note that if $(\lambda_i)_{1 \leq i \leq n} \in \mathbb{K}^n$ and $(e_{(\varepsilon_1,\ldots,\varepsilon_n)})_{(\varepsilon_1,\ldots,\varepsilon_n) \in D_n}$ are the standard unit vectors in \mathbb{K}^{2^n} ordered in the lexicographical order of D_n , then the following equality in \mathbb{K}^{2^n} holds:

(1) Average
$$(\lambda_i: 1 \leq i \leq n) = \sum_{(\varepsilon_1, \dots, \varepsilon_n) \in D_n} (\varepsilon_1 \lambda_1 + \dots + \varepsilon_n \lambda_n) e_{(\varepsilon_1, \dots, \varepsilon_n)}.$$

If $1 \leq p < \infty$, by Khinchin's inequality we have

(2)
$$A_p \| (\lambda_1, \dots, \lambda_n) \|_2 \leq \left\| \operatorname{Average} \left(\frac{1}{2^{n/p}} \lambda_i \colon 1 \leq i \leq n \right) \right\|_p$$
$$= \left(\frac{1}{2^n} \sum_{(\varepsilon_1, \dots, \varepsilon_n) \in D_n} |\varepsilon_1 \lambda_1 + \dots + \varepsilon_n \lambda_n|^p \right)^{1/p}$$
$$\leq B_p \| (\lambda_1, \dots, \lambda_n) \|_2.$$

Above and in the sequel A_p , B_p are Khinchin's constants (see [3]).

Lemma 2. Let $1 \leq p < \infty$, $n \in \mathbb{N}$, $\alpha = (\alpha_i)_{1 \leq i \leq n} \in \mathbb{K}^n$ and let Av_{α}^n : $C[0,1] \to l_p^{2^n}$ be the operator defined by

$$Av_{\alpha}^{n}(f) = \operatorname{Average}\left(\frac{\alpha_{i}}{2^{n/p}} \int_{0}^{1} f(t)r_{i}(t) \,\mathrm{d}t \colon 1 \leqslant i \leqslant n\right).$$

Then:

(i) $A_p 2^{-1/2} \|\alpha\|_{\infty} \leq \pi_2 (Av_{\alpha}^n) \leq B_p \|\alpha\|_{\infty}$.

(ii) $A_p \|\alpha\|_2 \leq \pi_1(Av_\alpha^n) \leq B_p \|\alpha\|_2.$

Proof. Let $f \in C[0,1]$. From the relation (2) we have

$$A_p \| U_{\alpha}^n(f) \|_2 \leqslant \| Av_{\alpha}^n(f) \| \leqslant B_p \| U_{\alpha}^n(f) \|_2$$

where $U_{\alpha}^n \colon C[0,1] \to l_2^n$ is defined by $U_{\alpha}^n(f) = \left(\alpha_i \int_0^1 f(t) r_i(t) \, \mathrm{d}t\right)_{1 \leqslant i \leqslant n}$. Thus

$$A_p\pi_2(U_{\alpha}^n) \leqslant \pi_2(Av_{\alpha}^n) \leqslant B_p\pi_2(U_{\alpha}^n) \quad \text{and} \quad A_p\pi_1(U_{\alpha}^n) \leqslant \pi_1(Av_{\alpha}^n) \leqslant B_p\pi_1(U_{\alpha}^n).$$

The conclusion follows, because in this case, by Lemma 1, $2^{-1/2} \|\alpha\|_{\infty} \leq \pi_2(U_{\alpha}^n) \leq \|\alpha\|_{\infty}$ and $\pi_1(U_{\alpha}^n) = \|\alpha\|_2$.

We need also the second average which we describe next. Let n be a natural number. Let us note that if $(\lambda_1, \ldots, \lambda_n) \in \mathbb{K}^n$ then

(3)
$$c_{\mathbb{K}} \sum_{i=1}^{n} |\lambda_i| \leq \|\operatorname{Average}(\lambda_i \colon 1 \leq i \leq n)\|_{\infty} \leq \sum_{i=1}^{n} |\lambda_i|$$

where $c_{\mathbb{K}} = 1$ if $\mathbb{K} := \mathbb{R}$; $c_{\mathbb{K}} = 1/2$ if $\mathbb{K} := \mathbb{C}$ (in this case consider the real and the imaginary part).

For $(\lambda_1, \ldots, \lambda_n) \in \mathbb{K}^n$ let us denote the 2^n elements of the set Average $(\lambda_i: 1 \leq i \leq n)$ by $\{\beta_1, \beta_2, \ldots, \beta_{2^n}\}$ and apply the same procedure; we define

Saverage
$$(\lambda_i: 1 \leq i \leq n) :=$$
 Average $(\beta_i: 1 \leq i \leq 2^n)$
= $\{\varepsilon_1\beta_1 + \ldots + \varepsilon_{2^n}\beta_{2^n}: (\varepsilon_1, \ldots, \varepsilon_{2^n}) \in D_{2^n}\} \subset \mathbb{K}^{2^{2^n}}.$

From the relation (3) we have

$$\frac{c_{\mathbb{K}}}{2^n} \| (\beta_1, \dots, \beta_{2^n}) \|_1 \leqslant \frac{1}{2^n} \| \operatorname{Saverage}(\lambda_i \colon 1 \leqslant i \leqslant n) \|_{\infty} \leqslant \frac{1}{2^n} \| (\beta_1, \dots, \beta_{2^n}) \|_1$$

and since by Khinchin's inequality

$$\frac{1}{\sqrt{2}} \| (\lambda_1, \dots, \lambda_n) \|_2 \leqslant \frac{1}{2^n} \sum_{i=1}^{2^n} |\beta_i| = \frac{1}{2^n} \sum_{(\varepsilon_1, \dots, \varepsilon_n) \in D_n} |\varepsilon_1 \lambda_1 + \dots + \varepsilon_n \lambda_n| \\ \leqslant \| (\lambda_1, \dots, \lambda_n) \|_2$$

we get

(4)
$$\frac{c_{\mathbb{K}}}{\sqrt{2}} \| (\lambda_1, \dots, \lambda_n) \|_2 \leq \frac{1}{2^n} \| \operatorname{Saverage}(\lambda_i \colon 1 \leq i \leq n) \|_{\infty} \leq \| (\lambda_1, \dots, \lambda_n) \|_2.$$

Lemma 3. (a) Let $n \in \mathbb{N}$, $\alpha = (\alpha_i)_{1 \leq i \leq n} \in \mathbb{K}^n$ and let $Av_{\alpha}^n \colon C[0,1] \to l_{\infty}^{2^n}$ be the operator defined by

$$Av_{\alpha}^{n}(f) = \operatorname{Average}\left(\alpha_{i} \int_{0}^{1} f(t)r_{i}(t) \,\mathrm{d}t \colon 1 \leqslant i \leqslant n\right).$$

Then:

(i) $c_{\mathbb{K}} 2^{-1/2} \| \alpha \|_2 \leq \pi_2 (A v_{\alpha}^n) \leq \| \alpha \|_2.$

(ii) $c_{\mathbb{K}} \|\alpha\|_1 \leqslant \pi_1(Av_\alpha^n) \leqslant \|\alpha\|_1.$

(b) Let $n \in \mathbb{N}$, $\alpha = (\alpha_i)_{1 \leq i \leq n} \in \mathbb{K}^n$ and let $\operatorname{Sav}_{\alpha}^n \colon C[0,1] \to l_{\infty}^{2^{2^n}}$ be the operator defined by

$$\operatorname{Sav}_{\alpha}^{n}(f) := \operatorname{Saverage}\left(\frac{1}{2^{n}}\alpha_{i}\int_{0}^{1}f(t)r_{i}(t)\,\mathrm{d}t\colon 1\leqslant i\leqslant n\right).$$

Then:

(i) $c_{\mathbb{K}} 2^{-1} \|\alpha\|_{\infty} \leq \pi_2(\operatorname{Sav}^n_{\alpha}) \leq \|\alpha\|_{\infty}.$ (ii) $c_{\mathbb{K}} 2^{-1/2} \|\alpha\|_2 \leq \pi_1(\operatorname{Sav}^n_{\alpha}) \leq \|\alpha\|_2.$

Proof. (a) Let $f \in C[0, 1]$. From the relation (3) we have

$$c_{\mathbb{K}} \| U_{\alpha}^{n}(f) \|_{1} \leq \| Av_{\alpha}^{n}(f) \|_{\infty} \leq \| U_{\alpha}^{n}(f) \|_{1}$$

where $U_{\alpha}^n \colon C[0,1] \to l_1^n$ is defined by $U_{\alpha}^n(f) = (\alpha_i \int_0^1 f(t) r_i(t) \, \mathrm{d}t)_{1 \leqslant i \leqslant n}$. Thus, easily,

$$c_{\mathbb{K}}\pi_2(U_{\alpha}^n) \leqslant \pi_2(Av_{\alpha}^n) \leqslant \pi_2(U_{\alpha}^n) \text{ and } c_{\mathbb{K}}\pi_1(U_{\alpha}^n) \leqslant \pi_2(Av_{\alpha}^n) \leqslant \pi_1(U_{\alpha}^n).$$

The conclusion follows, because in this case, by Lemma 1, $2^{-1/2} \|\alpha\|_2 \leq \pi_2(U_\alpha^n) \leq \|\alpha\|_2$ and $\pi_1(U_\alpha^n) = \|\alpha\|_1$.

(b) Let $f \in C[0, 1]$. From the relation (4) we have

$$\frac{c_{\mathbb{K}}}{\sqrt{2}} \|U_{\alpha}^{n}(f)\|_{2} \leq \|\operatorname{Sav}_{\alpha}^{n}(f)\|_{\infty} \leq \|U_{\alpha}^{n}(f)\|_{2}$$

where $U_{\alpha}^n \colon C[0,1] \to l_2^n$ is defined by $U_{\alpha}^n(f) = \left(\alpha_i \int_0^1 f(t) r_i(t) \, \mathrm{d}t\right)_{1 \leq i \leq n}$. Thus

$$\frac{c_{\mathbb{K}}}{\sqrt{2}}\pi_2(U_{\alpha}^n) \leqslant \pi_2(\operatorname{Sav}_{\alpha}^n) \leqslant \pi_2(U_{\alpha}^n); \quad \frac{c_{\mathbb{K}}}{\sqrt{2}}\pi_1(U_{\alpha}^n) \leqslant \pi_1(\operatorname{Sav}_{\alpha}^n) \leqslant \pi_1(U_{\alpha}^n).$$

The conclusion follows, because in this case, by Lemma 1, $2^{-1/2} \|\alpha\|_{\infty} \leq \pi_2(U_{\alpha}^n) \leq \|\alpha\|_{\infty}$ and $\pi_1(U_{\alpha}^n) = \|\alpha\|_2$.

The results

In the next theorem, which is the main result of this paper, we show how the local structure of the spaces $\Pi_2(C[0,1],X)$ and $\Pi_1(C[0,1],X)$ depends on the local structure of X.

Theorem 4. Let $1 \leq p \leq \infty$, $1 < \lambda < \infty$ and let X be a Banach space which contains l_p^n 's λ -uniformly. Then:

- (i) For $1 \leq p < 2$, $\Pi_2(C[0,1], X)$ contains $\lambda \sqrt{2}$ -uniformly copies of l_r^n 's where 1/p = 1/2 + 1/r.
- (ii) For $2 \leq p \leq \infty$, $\Pi_2(C[0,1], X)$ contains $\lambda \sqrt{2}$ -uniformly copies of l_{∞}^n 's.
- (iii) For $1 \leq p < \infty$, $\Pi_2(C[0,1], X)$ contains $\lambda B_p \sqrt{2}/A_p$ -uniformly copies of l_{∞}^n 's.
- (iv) $\Pi_1(C[0,1],X)$ contains λ -uniformly copies of l_n^n 's.
- (v) For $1 \leq p < \infty$, $\Pi_1(C[0,1], X)$ contains $\lambda B_p/A_p$ -uniformly copies of l_2^n 's.
- (vi) For $1 \leq p < \infty$, the spaces $\Pi_2(C[0,1],X)$ and $\Pi_1(C[0,1],X)$ are distinct; in particular, $\Pi_2(C[0,1],X) \neq \mathcal{N}(C[0,1],X)$.

Proof. (i), (ii) and (iv). Let $n \in \mathbb{N}$ be arbitrary. By hypothesis there exists a bounded linear operator $J_n: l_p^n \to X$ such that

(5)
$$\|\alpha\|_p \leqslant \|J_n(\alpha)\|_X \leqslant \lambda \|\alpha\|_p, \quad \alpha \in l_p^n.$$

Let us define $A_n: \mathbb{K}^n \to L(C[0,1], X)$ by $A_n(\alpha) = J_n \circ U_\alpha^n$, where $U_\alpha^n: C[0,1] \to l_p^n$ is the operator from Lemma 1. Though not needed in the sequel, let us note that if $\alpha = (\alpha_i)_{1 \leq i \leq n} \in \mathbb{K}^n$ and $f \in C[0,1]$ then

$$A_n(\alpha)(f) = \sum_{i=1}^n \alpha_i \left(\int_0^1 f(t) r_i(t) \, \mathrm{d}t \right) J_n(e_i).$$

Let $\alpha \in \mathbb{K}^n$. For every $f \in C[0,1]$ by (5) we have

$$||U_{\alpha}^{n}(f)||_{p} \leq ||[A_{n}(\alpha)](f)||_{X} = ||J_{n}(U_{\alpha}^{n}(f))||_{X} \leq \lambda ||U_{\alpha}^{n}(f)||_{p}$$

and by the definition of *p*-summing operators we deduce that

(6)
$$\pi_2(U_{\alpha}^n) \leqslant \pi_2(A_n(\alpha)) \leqslant \lambda \pi_2(U_{\alpha}^n)$$
 and $\pi_1(U_{\alpha}^n) \leqslant \pi_1(A_n(\alpha)) \leqslant \lambda \pi_1(U_{\alpha}^n).$

From (6) and Lemma 1 we obtain

$$\begin{split} \|\alpha\|_r &\leqslant \pi_2(\sqrt{2}A_n(\alpha)) \leqslant \lambda\sqrt{2} \|\alpha\|_r \quad \text{if } 1 \leqslant p < 2, \text{ where } \frac{1}{p} = \frac{1}{2} + \frac{1}{r} \\ \|\alpha\|_{\infty} &\leqslant \pi_2(\sqrt{2}A_n(\alpha)) \leqslant \lambda\sqrt{2} \|\alpha\|_{\infty} \quad \text{if } 2 \leqslant p < \infty, \\ \|\alpha\|_p &\leqslant \pi_1(A_n(\alpha)) \leqslant \lambda \|\alpha\|_p, \end{split}$$

which ends the proof of (i), (ii) and (iv).

(iii) and (v). Let $n \in \mathbb{N}$ be arbitrary. By hypothesis there exists a bounded linear operator $J_{2^n} \colon l_p^{2^n} \to X$ such that

(7)
$$\|\xi\|_p \leq \|J_{2^n}(\xi)\|_X \leq \lambda \|\xi\|_p, \quad \xi \in l_p^{2^n}.$$

We define $Av_n \colon \mathbb{K}^n \to L(C[0,1], X)$ by $Av_n(\alpha) = J_{2^n} \circ Av_\alpha^n$, where $Av_\alpha^n \colon C[0,1] \to l_p^{2^n}$ is the operator from Lemma 2. Again, though not needed in the sequel, let us note that if $\alpha = (\alpha_i)_{1 \leq i \leq n} \in \mathbb{K}^n$ and $f \in C[0,1]$ we have

$$[Av_n(\alpha)](f) = \frac{1}{2^{n/p}} \sum_{(\varepsilon_1, \dots, \varepsilon_n) \in D_n} \left(\varepsilon_1 \alpha_1 \int_0^1 f(t) r_1(t) \, \mathrm{d}t + \dots + \varepsilon_n \alpha_n \int_0^1 f(t) r_n(t) \, \mathrm{d}t \right) J_{2^n}(e_{(\varepsilon_1, \dots, \varepsilon_n)}).$$

Let $\alpha \in \mathbb{K}^n$. For every $f \in C[0,1]$ by (7) we have

$$||Av_{\alpha}^{n}(f)||_{p} \leq ||[Av_{n}(\alpha)](f)||_{X} = ||J_{2^{n}}(Av_{\alpha}^{n}(f))||_{X} \leq \lambda ||Av_{\alpha}^{n}(f)||_{p}$$

and by the definition of p-summing operators we deduce that

(8)
$$\pi_2(Av_{\alpha}^n) \leqslant \pi_2(Av_n(\alpha)) \leqslant \lambda \pi_2(Av_{\alpha}^n)$$
 and $\pi_1(Av_{\alpha}^n) \leqslant \pi_1(Av_n(\alpha)) \leqslant \lambda \pi_1(Av_{\alpha}^n)$.

Since by Lemma 2

$$\frac{A_p}{\sqrt{2}} \|\alpha\|_{\infty} \leqslant \pi_2(Av_n(\alpha)) \leqslant B_p \|\alpha\|_{\infty} \quad \text{and} \quad A_p \|\alpha\|_2 \leqslant \pi_1(Av_n(\alpha)) \leqslant B_p \|\alpha\|_2,$$

from (8) we obtain

$$\|\alpha\|_{\infty} \leqslant \pi_2 \Big(\frac{\sqrt{2}}{A_p} A v_n(\alpha)\Big) \leqslant \frac{\lambda B_p \sqrt{2}}{A_p} \|\alpha\|_{\infty}; \quad \|\alpha\|_2 \leqslant \pi_1 \Big(\frac{A v_n(\alpha)}{A_p}\Big) \leqslant \frac{\lambda B_p}{A_p} \|\alpha\|_2,$$

which ends the proof of (iii) and (v).

(vi) If $\Pi_2(C[0,1], X) = \Pi_1(C[0,1], X)$, then by the open mapping theorem it follows that there exists C > 0 such that $\pi_1(T) \leq C\pi_2(T)$ for all $T \in \Pi_1(C[0,1], X)$. In particular, $\pi_1(A_n(\alpha)) \leq C\pi_2(A_n(\alpha))$ for all natural numbers n and all $\alpha \in \mathbb{K}^n$. By (i), (ii) and (iv) for all natural numbers n and all $\alpha \in \mathbb{K}^n$ we have $\|\alpha\|_p \leq C\|\alpha\|_r$ if $1 \leq p < 2$, where 1/p = 1/2 + 1/r, or $\|\alpha\|_p \leq C\|\alpha\|_\infty$ if $2 \leq p < \infty$. Taking

$$\alpha = (\underbrace{1, \dots, 1}_{n-\text{times}})$$

1

we get that for all natural numbers n we have $n \leq C^2$ if $1 \leq p < 2$, or $n \leq C^p$ if $2 \leq p < \infty$, which is impossible. Let us note that a contradiction can be obtained if we use (iii) or (v). If $\Pi_2(C[0,1],X) = \mathcal{N}(C[0,1],X)$ then, since $\mathcal{N}(C[0,1],X) \subseteq \Pi_1(C[0,1],X) \subseteq \Pi_2(C[0,1],X)$, it follows that $\Pi_1(C[0,1],X) = \Pi_2(C[0,1],X)$, which as we have shown above is impossible.

As a natural consequence of Theorem 4, we recover the folklore result that if X is an infinite-dimensional Banach space then the spaces $\Pi_2(C[0,1],X)$ and $\Pi_1(C[0,1],X)$ are distinct. This extends the well-known result that the spaces $\Pi_2(C[0,1],X)$ and $\mathcal{N}(C[0,1],X)$ are distinct, see [10], Theorem 4.2.

Corollary 5. Let X be an infinite dimensional Banach space. Then:

- (i) $\Pi_2(C[0,1], X)$ contains $\lambda \sqrt{2}$ -uniformly copies of l_{∞}^n 's for all $\lambda > 1$.
- (ii) $\Pi_1(C[0,1], X)$ contains λ -uniformly copies of l_2^n 's for all $\lambda > 1$.
- (iii) The spaces $\Pi_2(C[0,1], X)$ and $\Pi_1(C[0,1], X)$ are distinct; in particular, $\Pi_2(C[0,1], X) \neq \mathcal{N}(C[0,1], X).$

Proof. Since X is infinite-dimensional, by the famous Dvoretzky theorem, see [3], Chapter 19, X contains l_2^n 's λ -uniformly for all $1 < \lambda < \infty$. The statement follows by taking p = 2 in Theorem 4.

Let us note that for $p = \infty$ in Theorem 4 ((ii) and (iv)) it follows that if $1 < \lambda < \infty$ and X is a Banach space which contains l_{∞}^{n} 's λ -uniformly, then $\Pi_{2}(C[0, 1], X)$ contains $\lambda\sqrt{2}$ -uniformly copies of l_{∞}^{n} 's and $\Pi_{1}(C[0, 1], X)$ contains λ -uniformly copies of l_{∞}^{n} 's, so in this case, there is no distinction between these classes.

We prove now a natural completion of Theorem 4. It shows that for $p = \infty$ in Theorem 4 we have also a distinction if we use the first and the second average.

Theorem 6. Let $1 < \lambda < \infty$ and let X be a Banach space which contains l_{∞}^{n} 's λ -uniformly. Then:

- (i) $\Pi_2(C[0,1], X)$ contains $\lambda\sqrt{2}$ -uniformly copies of l_2^n 's in the real case $(2\lambda\sqrt{2}-uniformly copies of <math>l_2^n$'s in the complex case).
- (ii) Π₁(C[0, 1], X) contains λ-uniformly copies of l₁ⁿ's in the real case (2λ-uniformly copies of l₁ⁿ's in the complex case).
- (iii) $\Pi_2(C[0,1],X)$ contains 2λ -uniformly copies of l_{∞}^n 's in the real case (4λ -uniformly copies of l_{∞}^n 's in the complex case).
- (iv) $\Pi_1(C[0,1], X)$ contains $\lambda\sqrt{2}$ -uniformly copies of l_2^n 's in the real case $(2\lambda\sqrt{2}-uniformly \text{ copies of } l_2^n$'s in the complex case).

Proof. (i) and (ii). Let $n \in \mathbb{N}$ be arbitrary. By hypothesis there exists a bounded linear operator $J_{2^n} \colon l_{\infty}^{2^n} \to X$ such that

(9)
$$\|\xi\|_{\infty} \leqslant \|J_{2^n}(\xi)\|_X \leqslant \lambda \|\xi\|_{\infty}, \quad \xi \in l_{\infty}^{2^n}.$$

We define $Av_n \colon \mathbb{K}^n \to L(C[0,1], X)$ by $Av_n(\alpha) = J_{2^n} \circ Av_\alpha^n$, where $Av_\alpha^n \colon C[0,1] \to l_\infty^{2^n}$ is the operator from Lemma 3. Let us note (not used in the sequel) the explicit expression,

$$[Av_n(\alpha)](f) = \sum_{(\varepsilon_1,\dots,\varepsilon_n)\in D_n} \left(\varepsilon_1\alpha_1 \int_0^1 f(t)r_1(t) \,\mathrm{d}t + \dots + \varepsilon_n\alpha_n \int_0^1 f(t)r_n(t) \,\mathrm{d}t\right) J_{2^n}(e_{(\varepsilon_1,\dots,\varepsilon_n)})$$

where $\alpha = (\alpha_i)_{1 \leq i \leq n} \in \mathbb{K}^n$ (see also the equality (1)). Let $\alpha \in \mathbb{K}^n$. For every $f \in C[0, 1]$ by (9) we have

$$||Av_{\alpha}^{n}(f)||_{\infty} \leq ||[Av_{n}(\alpha)](f)||_{X} = ||J_{2^{n}}(Av_{\alpha}^{n}(f))||_{X} \leq \lambda ||Av_{\alpha}^{n}(f)||_{\infty},$$

and by the definition of p-summing operators we deduce that

(10)
$$\pi_2(Av_{\alpha}^n) \leqslant \pi_2(Av_n(\alpha)) \leqslant \lambda \pi_2(Av_{\alpha}^n)$$

and

$$\pi_1(Av_\alpha^n) \leqslant \pi_1(Av_n(\alpha)) \leqslant \lambda \pi_1(Av_\alpha^n).$$

Since by Lemma 3

$$\frac{c_{\mathbb{K}}}{\sqrt{2}} \|\alpha\|_2 \leqslant \pi_2(Av_n(\alpha)) \leqslant \|\alpha\|_2 \quad \text{and} \quad c_{\mathbb{K}} \|\alpha\|_1 \leqslant \pi_1(Av_n(\alpha)) \leqslant \|\alpha\|_1,$$

from (10) we obtain

$$\|\alpha\|_{2} \leqslant \pi_{2} \Big(\frac{\sqrt{2}}{c_{\mathbb{K}}} A v_{n}(\alpha)\Big) \leqslant \frac{\lambda\sqrt{2}}{c_{\mathbb{K}}} \|\alpha\|_{2} \quad \text{and} \quad \|\alpha\|_{1} \leqslant \pi_{1} \Big(\frac{A v_{n}(\alpha)}{c_{\mathbb{K}}}\Big) \leqslant \frac{\lambda}{c_{\mathbb{K}}} \|\alpha\|_{1}$$

which ends the proof of (i) and (ii).

(iii) and (iv). Let $n \in \mathbb{N}$ be arbitrary. By hypothesis there exists a bounded linear operator $J_{2^{2^n}}: l_{\infty}^{2^{2^n}} \to X$ such that

(11)
$$\|\xi\|_{\infty} \leq \|J_{2^{2^n}}(\xi)\|_X \leq \lambda \|\xi\|_{\infty}, \quad \xi \in l_{\infty}^{2^{2^n}}.$$

We define $\operatorname{Sav}_n: \mathbb{K}^n \to L(C[0,1],X)$ by $\operatorname{Sav}_n(\alpha) = J_{2^{2^n}} \circ \operatorname{Sav}_\alpha^n$ where $\operatorname{Sav}_\alpha^n: C[0,1] \to l_\infty^{2^n}$ is the operator from Lemma 3. We leave for the interested reader to write the explicit expression for $[\operatorname{Sav}_n(\alpha)](f)$, which again is not used in the sequel. Let $\alpha \in \mathbb{K}^n$. For every $f \in C[0,1]$ by (11) we have

$$\|\operatorname{Sav}_{\alpha}^{n}(f)\|_{\infty} \leq \|[\operatorname{Sav}_{n}(\alpha)](f)\|_{X} = \|J_{2^{2^{n}}}(\operatorname{Sav}_{\alpha}^{n}(f))\|_{X} \leq \lambda \|\operatorname{Sav}_{\alpha}^{n}(f)\|_{\infty}$$

and by the definition of p-summing operators we deduce that

(12)
$$\pi_2(\operatorname{Sav}^n_{\alpha}) \leqslant \pi_2(\operatorname{Sav}^n_{\alpha})) \leqslant \lambda \pi_2(\operatorname{Sav}^n_{\alpha})$$

and

$$\pi_1(\operatorname{Sav}^n_\alpha) \leqslant \pi_1(\operatorname{Sav}_n(\alpha)) \leqslant \lambda \pi_1(\operatorname{Sav}^n_\alpha).$$

Since by Lemma 3

$$\frac{c_{\mathbb{K}}}{2} \|\alpha\|_{\infty} \leqslant \pi_2(\operatorname{Sav}_n(\alpha)) \leqslant \|\alpha\|_{\infty} \quad \text{and} \quad \frac{c_{\mathbb{K}}}{\sqrt{2}} \|\alpha\|_2 \leqslant \pi_1(\operatorname{Sav}_n(\alpha)) \leqslant \|\alpha\|_2,$$

from (12) we obtain

$$\|\alpha\|_{\infty} \leqslant \pi_2 \Big(\frac{2}{c_{\mathbb{K}}} \operatorname{Sav}_n(\alpha)\Big) \leqslant \frac{2\lambda}{c_{\mathbb{K}}} \|\alpha\|_{\infty} \text{ and } \|\alpha\|_2 \leqslant \pi_1 \Big(\frac{\sqrt{2} \operatorname{Sav}_n(\alpha)}{c_{\mathbb{K}}}\Big) \leqslant \frac{\lambda\sqrt{2}}{c_{\mathbb{K}}} \|\alpha\|_2,$$

which ends the proof of (iii) and (iv).

In [5] was shown that the space $\Pi_1(C[0,1], X)$ can be identified with the so called space $l_1^{\text{tree}}(X)$; we refer the reader to the paper [5] for the definition of this space and more details. From Theorems 4, 6 and Corollary 5 we get

Corollary 7. (a) Let $1 \leq p \leq \infty$, $1 < \lambda < \infty$ and let X be a Banach space which contains l_p^n 's λ -uniformly. Then:

- (i) $l_1^{\text{tree}}(X)$ contains λ -uniformly copies of l_p^n 's.
- (ii) For $1 \leq p < \infty$, $l_1^{\text{tree}}(X)$ contains $\lambda B_p/A_p$ -uniformly copies of l_2^n 's.

(b) Let $1 < \lambda < \infty$ and let X be a Banach space which contains l_{∞}^n 's λ -uniformly. Then:

- (i) $l_1^{\text{tree}}(X)$ contains $\lambda\sqrt{2}$ -uniformly copies of l_1^n 's in the real case $(2\lambda\sqrt{2}$ -uniformly copies of l_1^n 's in the complex case).
- (ii) $l_1^{\text{tree}}(X)$ contains λ -uniformly copies of l_2^n 's in the real case (2λ -uniformly copies of l_2^n 's in the complex case).

(c) Let X be an infinite dimensional Banach space. Then $l_1^{\text{tree}}(X)$ contains λ -uniformly copies of l_2^n 's for all $\lambda > 1$.

Acknowledgement. We thank the referee for his/her constructive comments and remarks which have improved the quality of presentation.

References

[1]	C. Costara, D. Popa: Exercises in Functional Analysis. Kluwer Texts in the Mathemat-		
	ical Sciences 26, Kluwer Academic Publishers Group, Dordrecht, 2003.	\mathbf{zbl}	MR doi
[2]	A. Defant, K. Floret: Tensor Norms and Operator Ideals. North-Holland Mathematics		
	Studies 176, North-Holland Publishing, Amsterdam, 1993.	\mathbf{zbl}	MR doi
[3]	J. Diestel, H. Jarchow, A. Tonge: Absolutely Summing Operators. Cambridge Studies in		
	Advanced Mathematics 43, Cambridge University Press, Cambridge, 1995.	\mathbf{zbl}	MR doi
[4]	J. Diestel, J. J. Uhl, Jr.: Vector Measures. Mathematical Surveys 15, American Mathe-		
	matical Society, Providence, 1977.	\mathbf{zbl}	MR doi
[5]	Å. Lima, V. Lima, E. Oja: Absolutely summing operators on $C[0, 1]$ as a tree space and		
	the bounded approximation property. J. Funct. Anal. 259 (2010), 2886–2901.	\mathbf{zbl}	MR doi
[6]	A. Pietsch: Operator Ideals. Mathematische Monographien 16, VEB Deutscher der Wis-		
	senschaften, Berlin, 1978.	zbl	MR
[7]	D. Popa: Examples of operators on $C[0, 1]$ distinguishing certain operator ideals. Arch.		
	Math. 88 (2007), 349–357.	zbl	MR doi
[8]	D. Popa: Khinchin's inequality, Dunford-Pettis and compact operators on the space		
	C([0,1], X). Proc. Indian Acad. Sci., Math. Sci. 117 (2007), 13–30.	\mathbf{zbl}	MR doi
[9]	D. Popa: Averages and compact, absolutely summing and nuclear operators on $C(\Omega)$.		
	J. Korean Math. Soc. 47 (2010), 899–924.	\mathbf{zbl}	MR doi
10]	M.A. Sofi: Factoring operators over Hilbert-Schmidt maps and vector measures. Indag.		
	Math., New Ser. 20 (2009), 273–284.	\mathbf{zbl}	MR doi

Author's address: Dumitru Popa, Department of Mathematics, Ovidius University of Constanța, Bd. Mamaia 124, 900527 Constanța, Romania, e-mail: dpopa@univovidius.ro.