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GENERALIZED LEBESGUE POINTS FOR SOBOLEV FUNCTIONS
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Abstract. In many recent articles, medians have been used as a replacement of integral
averages when the function fails to be locally integrable. A point x in a metric measure
space (X, d, µ) is called a generalized Lebesgue point of a measurable function f if the
medians of f over the balls B(x, r) converge to f(x) when r converges to 0. We know
that almost every point of a measurable, almost everywhere finite function is a generalized
Lebesgue point and the same is true for every point of a continuous function. We show that
a function f ∈ Ms,p(X), 0 < s 6 1, 0 < p < 1, where X is a doubling metric measure space,

has generalized Lebesgue points outside a set of Hh-Hausdorff measure zero for a suitable
gauge function h.
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1. Introduction

By the Lebesgue differentiation theorem, almost every point in R
n is a Lebesgue

point of a locally integrable function, that is

lim
r→0

1

|B(x, r)|

∫

B(x,r)

u(y) dy = u(x)

for almost every x ∈ R
n and for a locally integrable function u. It is a well-known

fact that a function f ∈ W 1,p(Rn), 1 6 p 6 n, has Lebesgue points outside a set

of p-capacity zero, e.g. [4], [27], [13]. Recently, there has been some interests in

studying Lebesgue points for Sobolev functions on metric measure spaces, especially

for functions in Haj lasz-Sobolev space M1,p(X) and in Newtonian space (or Sobolev
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space) N1,p(X) defined by Haj lasz in [8] and Shanmugalingam in [24], respectively.

The usual argument for obtaining the existence of Lebesgue points outside a small

set for a Sobolev function goes as follows. First, Lebesgue points exist outside a set of

capacity zero, see [17], [16] for Sobolev functions on metric measure spaces. Second,

each set of positive Hausdorff h-measure for a suitable h is of positive capacity,

see [20], [1], [22] for sets in R
n and [2], [14], [16] for sets in metric measure spaces.

Combining these results, one gets the existence of Lebesgue points outside a set of

Hausdorff h-measure zero for a suitable h, see [15] for more details on this.

In this paper, we study the existence of Lebesgue points of a function in Haj lasz-

Sobolev space M s,p(X) for 0 < s 6 1, 0 < p < 1, outside a small set in terms of

Hausdorff h-measure. Recall that a measurable function f : X → R, where X =

(X, d, µ) is a metric measure space, belongs to the Haj lasz-Sobolev space M s,p(X),

0 < s 6 1, p > 0 if and only if f ∈ Lp(X) and there exists a nonnegative function

g ∈ Lp(X) such that the inequality

(1.1) |f(x)− f(y)| 6 d(x, y)s(g(x) + g(y))

holds for all x, y ∈ X \ E, where µ(E) = 0. This definition is due to Haj lasz for

s = 1, see [8], and to Yang for fractional scales, see [26].

Recently, Heikkinen, Koskela and Tuominen have studied the existence of general-

ized Lebesgue points for functions in M s,p(X), 0 < s 6 1, 0 < p < ∞, outside a set

of capacity zero, see [12]. They have also studied the same question for functions

in Haj lasz-Besov spaces Ns
p,q and Haj lasz-Triebel-Lizorkin spaces M s

p,q. Notice that

M s
p,∞(X) = M s,p(X), see [19]. The existence of Lebesgue points outside a small set

in terms of capacity for Besov and Triebel-Lizorkin functions has been studied in [1],

[11], [21] and the relation between Besov capacity and Hausdorff measures has been

studied in [3]. In this paper we only consider functions in Haj lasz-Sobolev spaces

and avoid the use of capacity. The idea of avoiding capacity and proving the result

directly for Hausdorff measures has appeared in many papers, see for example [9]

and [15]. Here we use medians to define generalized Lebesgue points, as our func-

tions may fail to be locally integrable. Medians allow us to study the oscillation of

measurable functions. See Section 2 for the definitions of medians and generalized

Lebesgue points. Medians have been studied for example in [23], [7], [6], [25]. Our

result is the following.

Theorem 1.1. Let (X, d, µ) be a doubling metric measure space. Let f ∈

M s,p(X), where 0 < s 6 1, 0 < p < 1. Then lim
r→0

mγ
f (B(z, r)) exists outside a set Eε

with Hh(Eε) = 0 whenever

h(B(x, ̺)) =
µ(B(x, ̺))

̺sp
log−p−ε

(1

̺

)

and ε > 0.
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We refer to Section 2 for the definition of generalized Hausdorff h-measure and

also for the existence of the above limit outside a small set for a measurable and

almost everywhere finite function.

Our result seems to be new even in R
n. For f ∈ M1,p(Rn), where n/(n+ 1) <

p < 1, we can use integral averages instead of medians by the recent result of Koskela

and Saksman in [18]. They have proved that each function f ∈ M1,p(Rn) for p >

n/(n+ 1) is locally integrable. More details are given in Remark 3.2.

2. Notation and preliminaries

We assume throughout that X = (X, d, µ) is a metric measure space equipped

with a metric d and a Borel regular outer measure µ. We call such a µ a measure.

The Borel regularity of the measure µ means that all Borel sets are µ-measurable and

that for every set A ⊂ X there is a Borel set D such that A ⊂ D and µ(A) = µ(D).

We denote the open ball in X with center x ∈ X and radius 0 < r < ∞ by B(x, r) =

{y ∈ X : d(y, x) < r}. A Borel regular measure µ on a metric space (X, d) is called

a doubling measure if every ball in X has a positive and finite measure and there

exists a constant Cµ > 1 such that µ(B(x, 2r)) 6 Cµ µ(B(x, r)) holds for each x ∈ X

and r > 0. We call the triple (X, d, µ) a doubling metric measure space if µ is

a doubling measure on X .

Definition 2.1. Let 0 < γ 6 1/2. The γ-median mγ
f (A) of a measurable, almost

everywhere finite function f over a set A ⊂ X of finite measure is

mγ
f(A) = sup{M ∈ R : µ({x ∈ A : f(x) < M}) 6 γµ(A)}.

Definition 2.2. Let 0 < γ 6 1/2 and let f be a measurable, almost everywhere

finite function. A point x ∈ X is a generalized Lebesgue point of f if

lim
r→0

mγ
f (B(x, r)) = f(x).

We mention here the basic property of medians, for more properties and details

see [23], [12]. These two references guarantee that almost every point is a generalized

Lebesgue point.

Theorem 2.3. There exists a set E with µ(E) = 0 such that

lim
r→0

mγ
f (B(x, r)) = f(x)

for every 0 < γ 6 1/2 and x ∈ X \ E.
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We recall that the generalized Hausdorff h-measure is defined by

Hh(E) = lim sup
δ→0

Hh
δ (E),

where

Hh
δ (E) = inf

{

∑

h(B(xi, ri)) : E ⊂
⋃

B(xi, ri), ri 6 δ
}

,

where the dimension gauge function h is required to be continuous and increasing

with h(0) = 0, see [16].

For the readers’s convenience we state here a fundamental covering lemma (for

the proof see [5], 2.8.4–6, or [27], Theorem 1.3.1).

Lemma 2.4 (5B-covering lemma). Every family F of balls of uniformly bounded

diameters in a metric space X contains a pairwise disjoint subfamily G such that for

every B ∈ F there exists B′ ∈ G such as B ∩B′ 6= ∅ and diam(B) < 2 diam(B′). In

particular, we have that
⋃

B∈F

B ⊂
⋃

B∈G

5B.

3. Proof of Theorem 1.1

Fix ε > 0. Let h be as in the statement of Theorem 1.1. Let us write Bj =

B(z, 2−j) for z ∈ X and j ∈ N. Our first aim is to show that the sequence (mγ
f (Bj))j

is a Cauchy sequence outside a set of Hh-measure zero. Let us also write Bl
j =

{x ∈ Bj : f(x) 6 mγ
f (Bj)} and Bu

j = {y ∈ Bj : f(y) > mγ
f (Bj)} for all j ∈ N. Then

from the definition of the median it easily follows that for all j ∈ N

(3.1) µ(Bl
j) > γµ(Bj) and µ(Bu

j ) > (1− γ)µ(Bj).

Suppose first that mγ
f (Bj) > mγ

f (Bj+1). Using inequality (1.1) and the Fubini

theorem, we obtain

µ(Bu
j )µ(B

l
j+1)|m

γ
f (Bj)−mγ

f (Bj+1)|
p

6

∫

Bu
j

∫

Bl
j+1

|f(x)− f(y)|p dµ(x) dµ(y)

6

∫

Bu
j

∫

Bl
j+1

d(x, y)sp(g(x) + g(y))p dµ(x) dµ(y)

6 2p
∫

Bu
j

∫

Bl
j+1

d(x, y)sp(gp(x) + gp(y)) dµ(x) dµ(y)

146



= 22p2−spjµ(Bu
j )

∫

Bl
j+1

gp(x) dµ(x)

+ 22p2−spjµ(Bl
j+1)

∫

Bu
j

gp(x) dµ(x).

Using the doubling property and inequalities in (3.1), we get

|mγ
f (Bj)−mγ

f (Bj+1)|
p 6 22p2−spj

[

µ(Bj)

µ(Bl
j+1)

+
µ(Bj)

µ(Bu
j )

]
∫

Bj

gp(x) dµ(x)(3.2)

6 22p2−spj

[

Cµ

γ
+

1

1− γ

]
∫

Bj

gp(x) dµ(x)

= C12
−spj

∫

Bj

gp(x) dµ(x),

where C1 = 22p[Cµ/γ + 1/(1− γ)].

Next, suppose that mγ
f (Bj) 6 mγ

f (Bj+1). Replacing Bu
j by Bl

j and Bl
j+1 by Bu

j+1

we repeat the above argument to obtain inequality (3.2) with the constant C2 =

22p[Cµ/(1− γ) + 1/γ].

By choosing C = max{C1, C2} we conclude that

|mγ
f (Bj)−mγ

f (Bj+1)|
p 6 C2−spj

∫

Bj

gp(x) dµ(x)

holds for all possible values of mγ
f (Bj), m

γ
f (Bj+1) and all j. For m, l ∈ N, m < l this

gives the estimate

|mγ
f (Bl)−mγ

f (Bm)| 6
l−1
∑

j=m

|mγ
f (Bj)−mγ

f (Bj+1)|(3.3)

6 C
l−1
∑

j=m

2−sj

(
∫

Bj

gp(x) dµ(x)

)1/p

.

Let h1(B(x, ̺)) = µ(B(x, ̺))/̺sp log−p−ε/2(1/̺). If
∫

B(z,r) g
p dx 6 Ch1(B(z, r))

for all sufficiently small 0 < r < 1/5, then (mγ
f (Bj))j is a Cauchy sequence, by (3.3).

On the other hand, let us consider the set

Eε =

{

z ∈ X : there exists arbitrarily small 0 < rz <
1

5

such that

∫

B(z,rz)

gp dµ(x) > Ch1(B(z, rz))

}

.
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Let 0 < δ < 1/5. By using the 5B-covering lemma, we get a pairwise disjoint family G

consisting of balls as above such that

Eε ⊂
⋃

B∈G

5B,

where diam(B) < 2δ for B ∈ G. Then

Hh1

10δ(Eε) 6 C
∑

B∈G

h1(B(z, 5rz))

6 C
∑

B∈G

∫

B

gp dµ(x)

6 C

∫

⋃

B∈G

B

gp dµ(x) < ∞.

It follows that Hh1(Eε) < ∞ and hence we have that Hh(Eε) = 0, which yields the

existence of lim
j→∞

mγ
f (B(z, 2−j)) for Hh-a.e. z ∈ X.

For given r > 0, we can always find j ∈ N such that 2−(j+1) < r < 2−j. Using the

same method as above, we conclude that

|mγ
f (Bj)−mγ

f (B(z, r))| 6 C2−spj

∫

Bj

gp(x) dµ(x)

and that lim
r→0

mγ
f (B(z, r)) exists outside Eε. �

Remark 3.1. It is known that f ∈ M1,1(X) has Lebesgue points outside a set E

with Hh(E) = 0 with h(B(x, ̺)) = µ(B(x, ̺))/̺ provided X supports a 1-Poincaré

inequality, [16]. We do not know if one can obtain a better result than Theorem 1.1

for f ∈ M1,p(X) by showing that the exceptional set has Hh-Hausdorff measure zero

with h(B(x, ̺)) = µ(B(x, ̺))/̺p. In R
n, one possible approach is to use the Riesz

potential after inequality (3.3), as shown below.

It is easy to see from (3.3) that

|mγ
f (Bl)−mγ

f(Bm)| 6 C

( l−1
∑

j=m

2−jp

∫

Bj

gp(x) dx

)1/p

6 C

(
∫

Bm

gp(x)

|z − x|n−p
dx

)1/p

= CIBm

p gp(z),

where IBm
p gp(z) is the Riesz potential (local version) of gp. Then we use Theo-

rem 3.1.4 (a) of [1] to conclude that lim
r→0

mγ
f (B(z, r)) exists outside E with Ln(E) = 0.
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It would be interesting to know if there is an estimate similar to that in Theo-

rem 3.1.4 (a) of [1] for the Hn−α-Hausdorff measure of the set {z : Iαu(z) > λ}, for

u ∈ L1(Rn), 0 < α < n and for all λ > 0. This would improve our result in this case.

Remark 3.2. In R
n, for the case when n/(n + 1) < p < 1, we use telescoping

arguments between the centred balls and also inequality (1.1) to get an estimate

similar to that in (3.3) for the integral averages instead of medians. Similar technique

can be found in [10]. Then it is easy to see that lim
r→0

fB(z,r) exists outside a set of

Hh-measure zero with the same h as in Theorem 1.1.
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