Czechoslovak Mathematical Journal, Vol. 63, No. 1, pp. 65-71, 2013

Congruences for certain binomial sums

Jung-Jo Lee

Jung-Jo Lee, Yonsei University, Seoul 120-749, South Korea, e-mail: jungjolee@gmail.com

Abstract: We exploit the properties of Legendre polynomials defined by the contour integral $\bold P_n(z)=(2\pi i)^{-1} \oint(1-2tz+t^2)^{-1/2}t^{-n-1} dt$, where the contour encloses the origin and is traversed in the counterclockwise direction, to obtain congruences of certain sums of central binomial coefficients. More explicitly, by comparing various expressions of the values of Legendre polynomials, it can be proved that for any positive integer $r$, a prime $p \geqslant5$ and $n=rp^2-1$, we have $\sum_{k=0}^{\lfloor n/2\rfloor}{2k \choose k}\equiv0, 1\text{ or }-1 \pmod{p^2}$, depending on the value of $r \pmod6$.

Keywords: central binomial coefficient, Legendre polynomial

Classification (MSC 2010): 05A10, 11B65


Full text available as PDF.

Access to the full text of journal articles on this site is restricted to the subscribers of Myris Trade. To activate your access, please contact Myris Trade at myris@myris.cz.
Subscribers of Springer need to access the articles on their site, which is http://link.springer.com/journal/10587.


[Previous Article] [Next Article] [Contents of This Number] [Contents of Czechoslovak Mathematical Journal]