Czechoslovak Mathematical Journal, online first, 14 pp.

A Cauchy-Pompeiu formula in super Dunkl-Clifford analysis

Hongfen Yuan

Received April 16, 2016.   First published March 29, 2017.

Hongfen Yuan, School of Mathematics and Physics, Hebei University of Engineering, Guangming South Street 199, Handan, Hebei, 056038, P. R. China, e-mail: yhf0609@163.com

Abstract: Using a distributional approach to integration in superspace, we investigate a Cauchy-Pompeiu integral formula in super Dunkl-Clifford analysis and several related results, such as Stokes formula, Morera's theorem and Painlevé theorem for super Dunkl-monogenic functions. These results are nice generalizations of well-known facts in complex analysis.

Keywords: super Dunkl-Dirac operator; Stokes formula; Cauchy-Pompeiu integral formula; Morera's theorem; Painlevé theorem

Classification (MSC 2010): 30G35, 26B20, 58C50

DOI: 10.21136/CMJ.2017.0187-16

Full text available as PDF.


References:
  [1] G. Bernardes, P. Cerejeiras, U. Kähler: Fischer decomposition and Cauchy kernel for Dunkl-Dirac operators. Adv. Appl. Clifford Algebr. 19 (2009), 163-171. DOI 10.1007/s00006-009-0151-x | MR 2524663 | Zbl 1172.30020
  [2] P. Cerejeiras, U. Kähler, G. Ren: Clifford analysis for finite reflection groups. Complex Var. Elliptic Equ. 51 (2006), 487-495. DOI 10.1080/17476930500482499 | MR 2230262 | Zbl 1115.30053
  [3] K. Coulembier, H. De Bie, F. Sommen: Integration in superspace using distribution theory. J. Phys. A, Math. Theor. 42 (2009), Article ID 395206, 23 pages. DOI 10.1088/1751-8113/42/39/395206 | MR 2539324 | Zbl 1187.58011
  [4] H. De Bie, N. De Schepper: Clifford-Gegenbauer polynomials related to the Dunkl Dirac operator. Bull. Belg. Math. Soc.-Simon Stevin 18 (2011), 193-214. MR 2847756 | Zbl 1227.30038
  [5] H. De Bie, F. Sommen: Correct rules for Clifford calculus on superspace. Adv. Appl. Clifford Algebr. 17 (2007), 357-382. DOI 10.1007/s00006-007-0042-y | MR 2350585 | Zbl 1129.30034
  [6] H. De Bie, F. Sommen: Spherical harmonics and integration in superspace. J. Phys. A, Math. Theor. 40 (2007), 7193-7212. DOI 10.1088/1751-8113/40/26/007 | MR 2344451 | Zbl 1143.30315
  [7] C. F. Dunkl: Differential-difference operators associated to reflection groups. Trans. Am. Math. Soc. 311 (1989), 167-183. DOI 10.2307/2001022 | MR 0951883 | Zbl 0652.33004
  [8] C. F. Dunkl, Y. Xu: Orthogonal Polynomials of Several Variables. Encyclopedia of Mathematics and Its Applications 81, Cambridge University Press, Cambridge (2001). DOI 10.1017/CBO9780511565717 | MR 1827871 | Zbl 0964.33001
  [9] M. G. Fei: Fundamental solutions of iterated Dunkl-Dirac operators and their applications. Acta Math. Sci. Ser. A, Chin. Ed. 33 (2013), 1052-1061. (In Chinese.) MR 3184906 | Zbl 1313.33013
  [10] M. Fei, P. Cerejeiras, U. Kähler: Fueter's theorem and its generalizations in Dunkl-Clifford analysis. J. Phys. A, Math. Theor. 42 (2009), Article ID 395209, 15 pages. DOI 10.1088/1751-8113/42/39/395209 | MR 2539327 | Zbl 1230.30033
  [11] M. Fei, P. Cerejeiras, U. Kähler: Spherical Dunkl-monogenics and a factorization of the Dunkl-Laplacian. J. Phys. A, Math. Theor. 43 (2010), Article ID 445202, 14 pages. DOI 10.1088/1751-8113/43/44/445202 | MR 2733821 | Zbl 1203.30054
  [12] G. J. Heckman: Dunkl operators. Séminaire Bourbaki, Volume 1996/97. Exposés 820-834. Société Mathématique de France, Astérisque 245 (1997), 223-246. MR 1627113 | Zbl 0916.33012
  [13] J. E. Humphreys: Reflection Groups and Coxeter Groups. Cambridge Studies in Advanced Mathematics 29, Cambridge University Press, Cambridge (1990). DOI 10.1017/CBO9780511623646 | MR 1066460 | Zbl 0725.20028
  [14] G. Ren: Howe duality in Dunkl superspace. Sci. China, Math. 53 (2010), 3153-3162. DOI 10.1007/s11425-010-4063-y | MR 2746313 | Zbl 1213.30087
  [15] K. Trimèche: Paley-Wiener theorems for the Dunkl transform and Dunkl translation operators. Integral Transforms Spec. Funct. 13 (2002), 17-38. DOI 10.1080/10652460212888 | MR 1914125 | Zbl 1030.44004
  [16] J. F. Van Diejen, L. Vinet (eds.): Calogero-Moser-Sutherland Models. Workshop, Centre de Recherches Mathématique, Montréal, 1997. CRM Series in Mathematical Physics, Springer, New York (2000). DOI 10.1007/978-1-4612-1206-5 | MR 1843558 | Zbl 0942.00063
  [17] H. F. Yuan, V. V. Karachik: Dunkl-Poisson equation and related equations in superspace. Math. Model. Anal. 20 (2015), 768-781. DOI 10.3846/13926292.2015.1112856 | MR 3427166
  [18] H. Yuan, Y. Qiao, H. Yang: Properties of $k$-monogenic functions and their relative functions in superspace. Adv. Math., Beijing 42 (2013), 233-242. (In Chinese.) MR 3112909 | Zbl 1299.30132
  [19] H. Yuan, Z. Zhang, Y. Qiao: Polynomial Dirac operators in superspace. Adv. Appl. Clifford Algebr. 25 (2015), 755-769. DOI 10.1007/s00006-014-0524-7 | MR 3384860 | Zbl 1325.35008


Access to the full text of journal articles on this site is restricted to the subscribers of Myris Trade. To activate your access, please contact Myris Trade at myris.cz.
Subscribers of Springer need to access the articles on their site, which is http://link.springer.com/journal/10587.


[List of online first articles] [Contents of Czechoslovak Mathematical Journal]