Czechoslovak Mathematical Journal, online first, 30 pp.

# On boundary value problems for systems of nonlinear generalized ordinary differential equations

## Malkhaz Ashordia

#### Received May 3, 2011.   First published July 11, 2017.

Malkhaz Ashordia, A. Razmadze Mathematical Institute of I. Javakhishvili Tbilisi State University, 6 Tamarashvili St., Tbilisi 0177, Georgia, and Sukhumi State University, 12, Politkovskaya St., Tbilisi 0186, Georgia, e-mail: ashord@rmi.ge

Abstract: A general theorem (principle of a priori boundedness) on solvability of the boundary value problem ${\rm d} x={\rm d} A(t)\cdot f(t,x),\quad h(x)=0$ is established, where $f\colon[a,b]\times\mathbb{R}^n\to\mathbb{R}^n$ is a vector-function belonging to the Carathéodory class corresponding to the matrix-function $A\colon[a,b]\to\mathbb{R}^{n\times n}$ with bounded total variation components, and $h\colon\operatorname{BV}_s([a,b],\mathbb{R}^n)\to\mathbb{R}^n$ is a continuous operator. Basing on the mentioned principle of a priori boundedness, effective criteria are obtained for the solvability of the system under the condition $x(t_1(x))=\mathcal{B}(x)\cdot x(t_2(x))+c_0,$ where $t_i\colon\operatorname{BV}_s([a,b],\mathbb{R}^n)\to[a,b]$ $(i=1,2)$ and $\mathcal{B}\colon\operatorname{BV}_s([a,b],\mathbb{R}^n)\to\mathbb{R}^n$ are continuous operators, and $c_0\in\mathbb{R}^n$.

Keywords: system of nonlinear generalized ordinary differential equations; Kurzweil-Stieltjes integral; general boundary value problem; solvability; principle of a priori boundedness

Classification (MSC 2010): 34K10

DOI: 10.21136/CMJ.2017.0144-11

Full text available as PDF.

References:
[1] M. T. Ashordiya: On solvability of quasilinear boundary value problems for systems of generalized ordinary differential equations. Soobshch. Akad. Nauk Gruz. SSR 133 (1989), 261-264. (In Russian. English summary.) MR 1040252 | Zbl 0686.34022
[2] M. Ashordia: On the correctness of linear boundary value problems for systems of generalized ordinary differential equations. Georgian Math. J. 1 (1994), 343-351. DOI 10.1007/BF02307443 | MR 1262572 | Zbl 0808.34015
[3] M. Ashordia: On the stability of solutions of a multipoint boundary value problem for a system of generalized ordinary differential equations. Mem. Differ. Equ. Math. Phys. 6 (1995), 1-57. MR 1415807 | Zbl 0873.34012
[4] M. T. Ashordiya: Criteria for the existence and uniqueness of solutions to nonlinear boundary value problems for systems of generalized ordinary differential equations. Differ. Equations 32 (1996) 442-450. (In English. Russian original.); translation from Differ. Uravn. 32 (1996), 441-449. MR 1436980 | Zbl 0884.34029
[5] M. Ashordia: Criteria of correctness of linear boundary value problems for systems of generalized ordinary differential equations. Czech. Math. J. 46 (1996), 385-404. MR 1408294 | Zbl 0879.34037
[6] M. T. Ashordia: A solvability criterion for a many-point boundary value problem for systems of generalized ordinary differential equations. Differ. Equations 32 (1996), 1300-1308. (In English. Russian original.); translation from Differ. Uravn. 32 (1996), 1303-1311. DOI 10.1007/BF02259778 | MR 1419831 | Zbl 0876.34021
[7] M. T. Ashordiya: On the corretnessof nonlinear boundary value problems for systemsof generalized ordinary differential equations. Georgian Math. J. 3 (1996), 501-524. DOI 10.1007/BF02259778  MR 1419831 | Zbl 0876.34021
[8] M. Ashordia: Conditions for existence and uniqueness of solutions to multipoint boundary value problems for systems of generalized ordinary differential equations. Georgian Math. J. 5 (1998), 1-24. DOI 10.1023/B:GEOR.0000008135.69001.48 | MR 1606414 | Zbl 0902.34013
[9] M. Ashordia: On the solvability of linear boundary value problems for systems of generalized ordinary differential equations. Funct. Differ. Equ. 7 (2000), 39-64. MR 1941857 | Zbl 1050.34007
[10] M. Ashordia: On the general and multipoint boundary value problems for linear systems of generalized ordinary differential equations, linear impulse and linear difference systems. Mem. Differ. Equ. Math. Phys. 36 (2005), 1-80. MR 2196660 | Zbl 1098.34010
[11] R. Conti: Problèmes linéaires pour les équations différentielles ordinaires. Math. Nachr. 23 (1961), 161-178. (In French.) DOI 10.1002/mana.1961.3210230304 | MR 0138818 | Zbl 0107.28803
[12] J. Groh: A nonlinear Volterra-Stieltjes integral equation and a Gronwall inequality in one dimension. Ill. J. Math. 24 (1980), 244-263. MR 0575065 | Zbl 0454.45002
[13] T. H. Hildebrandt: On systems of linear differentio-Stieltjes-integral equations. Ill. J. Math. 3 (1959), 352-373. MR 0105600 | Zbl 0088.31101
[14] I. T. Kiguradze: Boundary-value problems for systems of ordinary differential equations. J. Sov. Math. 43 (1988), 2259-2339. (In English. Russian original.); translation from Itogi Nauki Tekh., Ser. Sovrem. Probl. Mat., Novejshie Dostizh. 30 (1987), 3-103. DOI 10.1007/BF01100360 | MR 0925829 | Zbl 0782.34025
[15] I. T. Kiguradze, B. Půža: Boundary-value problems for systems of ordinary differential equations. Mem. Differ. Equ. Math. Phys. 12 (1997), 106-113. MR 1636865 | Zbl 0909.34054
[16] I. T. Kiguradze, B. Půža: Theorems of Conti-Opial type for nonlinear functional-differential equations. Differ. Equations 33 (1997), 184-193. (In English. Russian original.); translation from Differ. Uravn. 33 (1997), 185-194. MR 1609904 | Zbl 0908.34046
[17] I. T. Kiguradze, B. Půža: On the solvability of nonlinear boundary value problems for functional-differential equations. Georgian Math. J. 5 (1998), 251-262. DOI 10.1023/B:GEOR.0000008124.88849.7c | MR 1618364 | Zbl 0909.34057
[18] I. T. Kiguradze, B. Půža: Conti-Opial type existence and uniqueness theorems for nonlinear singular boundary value problems. Funct. Differ. Equ. 9 (2002), 405-422. MR 1971619 | Zbl 1048.34108
[19] I. T. Kiguradze, B. Půža: Boundary Value Problems for Systems of Linear Functional Differential Equations. Folia Facultatis Scientiarum Naturalium Universitatis Masarykianae Brunensis. Mathematica 12. Brno: Masaryk University (2003). MR 2001509 | Zbl 1161.34300
[20] J. Kurzweil: Generalized ordinary differential equations and continuous dependence on a parameter. Czech. Math. J. 7 (1957), 418-449. MR 0111875 | Zbl 0090.30002
[21] Z. Opial: Linear problems for systems of nonlinear differential equations. J. Differ. Equations 3 (1967), 580-594. DOI 10.1016/0022-0396(67)90018-6 | MR 0216068 | Zbl 0161.06102
[22] Š. Schwabik: Generalized Ordinary Differential Equations. Series in Real Analysis 5, World Scientific, Singapore (1992). DOI 10.1142/1875 | MR 1200241 | Zbl 0781.34003
[23] Š. Schwabik, M. Tvrdý: Boundary value problems for generalized linear differential equations. Czech. Math. J. 29 (1979), 451-477. MR 0536070 | Zbl 0424.34014
[24] Š. Schwabik, M. Tvrdý, O. Vejvoda: Differential and Integral Equations. Boundary Value Problems and Adjoints. Reidel, Dordrecht, in co-ed. with Academia, Publishing House of the Czechoslovak Academy of Sciences, Praha (1979). MR 0542283 | Zbl 0417.45001