Czechoslovak Mathematical Journal, online first, 5 pp.

On critical values of twisted Artin $L$-functions

Peng-Jie Wong

Received March 18, 2016.   First published March 28, 2017.

Peng-Jie Wong, Department of Mathematics and Statistics, Queen's University, Jeffery Hall, 48 University Ave., Kingston, K7L 3N6, Ontario, Canada, e-mail: pjwong@mast.queensu.ca

Abstract: We give a simple proof that critical values of any Artin $L$-function attached to a representation $\rho$ with character $\chi_{\rho}$ are stable under twisting by a totally even character $\chi$, up to the $\dim\rho$-th power of the Gauss sum related to $\chi$ and an element in the field generated by the values of $\chi_{\rho}$ and $\chi$ over $\mathbb{Q}$. This extends a result of Coates and Lichtenbaum as well as the previous work of Ward.

Keywords: Artin $L$-function; character; Galois Gauss sum; special value

Classification (MSC 2010): 11F67, 11F80, 11L05, 11M06

DOI: 10.21136/CMJ.2017.0134-16

Full text available as PDF.


References:
  [1] J. Coates, S. Lichtenbaum: On $l$-adic zeta functions. Ann. Math. (2) 98 (1973), 498-550. DOI 10.2307/1970916 | MR 0330107 | Zbl 0279.12005
  [2] H. Klingen: Über die Werte der Dedekindschen Zetafunktion. Math. Ann. 145 (1962), 265-272. (In German.) DOI 10.1007/BF01451369 | MR 0133304 | Zbl 0101.03002
  [3] J. Martinet: Character theory and Artin $L$-functions. Algebraic Number Fields Proc. Symp. London math. Soc., Univ. Durham 1975, Academic Press, London (1977), 1-87. MR 0447187 | Zbl 0359.12015
  [4] J. Neukirch: Algebraic Number Theory. Grundlehren der Mathematischen Wissenschaften 322, Springer, Berlin (1999). DOI 10.1007/978-3-662-03983-0 | MR 1697859 | Zbl 0956.11021
  [5] C. L. Siegel: Über die Fourierschen Koeffizienten von Modulformen. Nachr. Akad. Wiss. Göttingen, II. Math.-Phys. Kl. 3 (1970), 15-56. (In German.) MR 0285488 | Zbl 0225.10031
  [6] K. Ward: Values of twisted Artin $L$-functions. Arch. Math. 103 (2014), 285-290. DOI 10.1007/s00013-014-0692-7 | MR 3266371 | Zbl 1314.11035


Access to the full text of journal articles on this site is restricted to the subscribers of Myris Trade. To activate your access, please contact Myris Trade at myris.cz.
Subscribers of Springer need to access the articles on their site, which is http://link.springer.com/journal/10587.


[List of online first articles] [Contents of Czechoslovak Mathematical Journal]