Czechoslovak Mathematical Journal, Vol. 67, No. 3, pp. 609-628, 2017

Relationships between generalized Wiener integrals and conditional analytic Feynman integrals over continuous paths

Byoung Soo Kim, Dong Hyun Cho

Received May 12, 2015.   First published August 12, 2017.

Byoung Soo Kim, School of Liberal Arts, Seoul National University of Science and Technology, 232 Gongneung, Nowon, Seoul 01811, Republic of Korea, e-mail:; Dong Hyun Cho, Department of Mathematics, Kyonggi University, 154-42 Gwanggyosan, Iui, Yeongtong, Suwon 16227, Gyeonggi, Republic of Korea, e-mail:

Abstract: Let $C[0,t]$ denote a generalized Wiener space, the space of real-valued continuous functions on the interval $[0,t]$, and define a random vector $Z_n C[0,t]\to\mathbb R^{n+1}$ by Z_n(x)=\biggl(x(0)+a(0), \int_0^{t_1}h(s)  {\rm d} x(s)+x(0)+a(t_1), \cdots,\int_0^{t_n}h(s)  {\rm d} x(s)+x(0)+a(t_n)\biggr), where $a\in C[0,t]$, $h\in L_2[0,t]$, and $0<t_1 < \cdots< t_n\le t$ is a partition of $[0,t]$. Using simple formulas for generalized conditional Wiener integrals, given $Z_n$ we will evaluate the generalized analytic conditional Wiener and Feynman integrals of the functions $F$ in a Banach algebra which corresponds to Cameron-Storvick's Banach algebra $\mathcal S$. Finally, we express the generalized analytic conditional Feynman integral of $F$ as a limit of the non-conditional generalized Wiener integral of a polygonal function using a change of scale transformation for which a normal density is the kernel. This result extends the existing change of scale formulas on the classical Wiener space, abstract Wiener space and the analogue of the Wiener space $C[0,t]$.

Keywords: analogue of Wiener space; analytic conditional Feynman integral; change of scale formula; conditional Wiener integral; Wiener integral

Classification (MSC 2010): 28C20, 60G05, 60G15, 60H05

DOI: 10.21136/CMJ.2017.0248-15

Full text available as PDF.

  [1] R. H. Cameron: The translation pathology of Wiener space. Duke Math. J. 21 (1954), 623-627. DOI 10.1215/S0012-7094-54-02165-1 | MR 0065033 | Zbl 0057.09601
  [2] R. H. Cameron, W. T. Martin: The behavior of measure and measurability under change of scale in Wiener space. Bull. Am. Math. Soc. 53 (1947), 130-137. DOI 10.1090/S0002-9904-1947-08762-0 | MR 0019259 | Zbl 0032.41801
  [3] R. H. Cameron, D. A. Storvick: Some Banach algebras of analytic Feynman integrable functionals. Analytic Functions Proc. Conf. Kozubnik 1979, Lect. Notes Math. 798, Springer, Berlin (1980), 18-67. DOI 10.1007/bfb0097256 | MR 0577446 | Zbl 0439.28007
  [4] R. H. Cameron, D. A. Storvick: Change of scale formulas for Wiener integral. Functional Integration with Emphasis on the Feynman Integral Proc. Workshop Sherbrooke 1986, Suppl. Rend. Circ. Mat. Palermo, II. Ser. (1988), 105-115. MR 0950411 | Zbl 0653.28005
  [5] K. S. Chang, D. H. Cho, I. Yoo: Evaluation formulas for a conditional Feynman integral over Wiener paths in abstract Wiener space. Czech. Math. J. 54 (2004), 161-180. DOI 10.1023/B:CMAJ.0000027256.06816.1a | MR 2040228 | Zbl 1047.28008
  [6] D. H. Cho: Change of scale formulas for conditional Wiener integrals as integral transforms over Wiener paths in abstract Wiener space. Commun. Korean Math. Soc. 22 (2007), 91-109. DOI 10.4134/CKMS.2007.22.1.091 | MR 2286898 | Zbl 1168.28311
  [7] D. H. Cho: A simple formula for a generalized conditional Wiener integral and its applications. Int. J. Math. Anal., Ruse 7 (2013), 1419-1431. DOI 10.12988/ijma.2013.3363 | MR 3066550 | Zbl 1285.28018
  [8] D. H. Cho: Analogues of conditional Wiener integrals with drift and initial distribution on a function space. Abstr. Appl. Anal. (2014), Article ID 916423, 12 pages. DOI 10.1155/2014/916423 | MR 3226236
  [9] D. H. Cho: Scale transformations for present position-dependent conditional expectations over continuous paths. Ann. Funct. Anal. AFA 7 (2016), 358-370. DOI 10.1215/20088752-3544830 | MR 3484389 | Zbl 1346.46038
  [10] D. H. Cho: Scale transformations for present position-independent conditional expectations. J. Korean Math. Soc. 53 (2016), 709-723. DOI 10.4134/JKMS.j150285 | MR 3498289 | Zbl 1339.28019
  [11] D. H. Cho, B. J. Kim, I. Yoo: Analogues of conditional Wiener integrals and their change of scale transformations on a function space. J. Math. Anal. Appl. 359 (2009), 421-438. DOI 10.1016/j.jmaa.2009.05.023 | MR 2546758 | Zbl 1175.28010
  [12] D. H. Cho, I. Yoo: Change of scale formulas for a generalized conditional Wiener integral. Bull. Korean Math. Soc. 53 (2016), 1531-1548. DOI 10.4134/BKMS.b150795 | MR 3553416 | Zbl 1350.28015
  [13] M. K. Im, K. S. Ryu: An analogue of Wiener measure and its applications. J. Korean Math. Soc. 39 (2002), 801-819. DOI 10.4134/JKMS.2002.39.5.801 | MR 1920906 | Zbl 1017.28007
  [14] B. S. Kim: Relationship between the Wiener integral and the analytic Feynman integral of cylinder function. J. Chungcheong Math. Soc. 27 (2014), 249-260. DOI 10.14403/jcms.2014.27.2.249
  [15] H.-H. Kuo: Gaussian Measures in Banach Spaces. Lecture Notes in Mathematics 463, Springer, Berlin (1975). DOI 10.1007/BFb0082007 | MR 0461643 | Zbl 0306.28010
  [16] I. D. Pierce: On a Family of Generalized Wiener Spaces and Applications. Ph.D. Thesis, The University of Nebraska, Lincoln (2011). MR 2890101
  [17] K. S. Ryu, M. K. Im: A measure-valued analogue of Wiener measure and the measure-valued Feynman-Kac formula. Trans. Am. Math. Soc. 354 (2002), 4921-4951. DOI 10.1090/S0002-9947-02-03077-5 | MR 1926843 | Zbl 1017.28008
  [18] I. Yoo, K. S. Chang, D. H. Cho, B. S. Kim, T. S. Song: A change of scale formula for conditional Wiener integrals on classical Wiener space. J. Korean Math. Soc. 44 (2007), 1025-1050. DOI 10.4134/JKMS.2007.44.4.1025 | MR 2334543 | Zbl 1129.28014
  [19] I. Yoo, D. Skoug: A change of scale formula for Wiener integrals on abstract Wiener spaces. Int. J. Math. Math. Sci. 17 (1994), 239-247. DOI 10.1155/S0161171294000359 | MR 1261069 | Zbl 0802.28008
  [20] I. Yoo, D. Skoug: A change of scale formula for Wiener integrals on abstract Wiener spaces II. J. Korean Math. Soc. 31 (1994), 115-129. MR 1269456 | Zbl 0802.28009
  [21] I. Yoo, T. S. Song, B. S. Kim, K. S. Chang: A change of scale formula for Wiener integrals of unbounded functions. Rocky Mt. J. Math. 34 (2004), 371-389. DOI 10.1216/rmjm/1181069911 | MR 2061137 | Zbl 1048.28010

Access to the full text of journal articles on this site is restricted to the subscribers of Myris Trade. To activate your access, please contact Myris Trade at
Subscribers of Springer need to access the articles on their site, which is

[Previous Article] [Next Article] [Contents of This Number] [Contents of Czechoslovak Mathematical Journal]