Czechoslovak Mathematical Journal, Vol. 67, No. 2, pp. 397-415, 2017

Polytopes, quasi-minuscule representations and rational surfaces

Jae-Hyouk Lee, Mang Xu, Jiajin Zhang

Received December 14, 2015.   First published May 4, 2017.

Jae-Hyouk Lee, Department of Mathematics, Ewha Womans University, 11-1 Daehyun-Dong, Seodaemun-Gu, 120-750 Seoul, Korea, e-mail: jaehyoukl@ewha.ac.kr; Mang Xu, Department of Mathematics, Southwest Jiaotong University, 2nd Ring Rd., 610031 Chengdu, Sichuan, P. R. China, e-mail: xumang@home.swjtu.edu.cn; Jiajin Zhang, Department of Mathematics, Sichuan University, Renmin South Rd 3rd Section, XiaoTianZhu, Wuhou Qu, 610065 Chengdu, Sichuan, P. R. China, e-mail: jjzhang@scu.edu.cn

Abstract: We describe the relation between quasi-minuscule representations, polytopes and Weyl group orbits in Picard lattices of rational surfaces. As an application, to each quasi-minuscule representation we attach a class of rational surfaces, and realize such a representation as an associated vector bundle of a principal bundle over these surfaces. Moreover, any quasi-minuscule representation can be defined by rational curves, or their disjoint unions in a rational surface, satisfying certain natural numerical conditions.

Keywords: rational surface; minuscule representation; polytope

Classification (MSC 2010): 14J26, 14N20

DOI: 10.21136/CMJ.2017.0676-15

Full text available as PDF.


References:
  [1] N. Bourbaki: Elements of Mathematics. Lie Groups and Lie algebras. Chapters 4-6. Springer, Berlin (2002). DOI 10.1007/978-3-540-89394-3 | MR 1890629 | Zbl 0983.17001
  [2] H. S. M. Coxeter: Regular and semiregular polytopes. II. Math. Z. 188 (1985), 559-591. DOI 10.1007/BF01161657 | MR 0774558 | Zbl 0547.52005
  [3] H. S. M. Coxeter: Regular and semi-regular polytopes. III. Math. Z. 200 (1988), 3-45. DOI 10.1007/BF01161745 | MR 0972395 | Zbl 0633.52006
  [4] H. S. M. Coxeter: The evolution of Coxeter-Dynkin diagrams. Nieuw Arch. Wiskd., IV. Ser. 9 (1991), 233-248. MR 1166143 | Zbl 0759.20013
  [5] M. Demazure, H. Pinkham, B. Teissier (eds.): Séminaire sur les Singularités des Surfaces. Centre de Mathématiques de l'Ecole Polytechnique, Palaiseau 1976-1977, Lecture Notes in Mathematics 777, Springer, Berlin (1980). (In French). DOI 10.1007/BFb0085872 | MR 0579026 | Zbl 0415.00010
  [6] R. Y. Donagi: Principal bundles on elliptic fibrations. Asian J. Math. 1 (1997), 214-223. DOI 10.4310/AJM.1997.v1.n2.a1 | MR 1491982 | Zbl 0927.14006
  [7] R. Donagi: Taniguchi lectures on principal bundles on elliptic fibrations. Integrable Systems and Algebraic Geometry Conf. Proc., Kobe/Kyoto, 1997, World Scientific, Singapore (1998), 33-46. MR 1672104 | Zbl 0963.14004
  [8] R. Friedman, J. Morgan, E. Witten: Vector bundles and $F$ theory. Commun. Math. Phys. 187 (1997), 679-743. DOI 10.1007/s002200050154 | MR 1468319 | Zbl 0919.14010
  [9] P. Henry-Labordère, B. Julia, L. Paulot: Borcherds symmetries in M-theory. J. High Energy Phys. 2002 (2002), No. 49, 31 pages. DOI 10.1088/1126-6708/2002/04/049 | MR 1911396
  [10] P. Henry-Labordère, B. Julia, L. Paulot: Real Borcherds superalgebras and M-theory. J. High Energy Phys. 2003 (2003), No. 60, 21 pages. DOI 10.1088/1126-6708/2003/04/060 | MR 1989546
  [11] J.-H. Lee: Gosset polytopes in Picard groups of del Pezzo surfaces. Can. J. Math. 64 (2012), 123-150. DOI 10.4153/CJM-2011-063-6 | MR 2932172 | Zbl 1268.14038
  [12] J.-H. Lee: Contractions of del Pezzo surfaces to $\mathbb P^2$ or $\mathbb P^1\times\mathbb P^1$. Rocky Mt. J. Math. 46 (2016), 1263-1273. DOI 10.1216/RMJ-2016-46-4-1263 | MR 3563181 | Zbl 06642645
  [13] N. C. Leung: ADE-bundle over rational surfaces, configuration of lines and rulings. Available at arXiv:math.AG/0009192.
  [14] N. C. Leung, M. Xu, J. Zhang: Kac-Moody $\widetilde E_k$-bundles over elliptic curves and del Pezzo surfaces with singularities of type $A$. Math. Ann. 352 (2012), 805-828. DOI 10.1007/s00208-011-0661-4 | MR 2892453 | Zbl 1242.14036
  [15] N. C. Leung, J. Zhang: Moduli of bundles over rational surfaces and elliptic curves. I: Simply laced cases. J. Lond. Math. Soc., II. Ser. 80 (2009), 750-770. DOI 10.1112/jlms/jdp053 | MR 2559127 | Zbl 1188.14025
  [16] E. Looijenga: Root systems and elliptic curves. Invent. Math. 38 (1976), 17-32. DOI 10.1007/BF01390167 | MR 0466134 | Zbl 0358.17016
  [17] Y. I. Manin: Cubic Forms: Algebra, Geometry, Arithmetic. North-Holland Mathematical Library 4, North-Holland Publishing Company, Amsterdam; American Elsevier Publishing Company, New York (1974). MR 0460349 | Zbl 0277.14014
  [18] L. Manivel: Configurations of lines and models of Lie algebras. J. Algebra 304 (2006), 457-486. DOI 10.1016/j.jalgebra.2006.04.029 | MR 2256401 | Zbl 1167.17001
  [19] C. S. Seshadri: Geometry of $G/P$. I: Theory of standard monomials for minuscule representations. C. P. Ramanujam - A Tribute Tata Inst. Fundam. Res., Stud. Math. 8, Springer, Berlin (1978), 207-239. MR 0541023 | Zbl 0447.14010


Access to the full text of journal articles on this site is restricted to the subscribers of Myris Trade. To activate your access, please contact Myris Trade at myris@myris.cz.
Subscribers of Springer need to access the articles on their site, which is https://link.springer.com/journal/10587.

[Previous Article] [Next Article] [Contents of This Number] [Contents of Czechoslovak Mathematical Journal]