Czechoslovak Mathematical Journal, Vol. 67, No. 2, pp. 379-387, 2017

Yetter-Drinfeld-Long bimodules are modules

Daowei Lu, Shuanhong Wang

Received December 9, 2015.   First published March 3, 2017.

Daowei Lu (corresponding author), Department of Mathematics, Jining University, No. 1 Xingtan Road, Qufu 273155, Shandong, P. R. of China, e-mail:; Shuanhong Wang, School of Mathematics, Southeast University, No. 2 Sipailou, Nanjing 210096, Jiangsu, P. R. of China, e-mail:

Abstract: Let $H$ be a finite-dimensional bialgebra. In this paper, we prove that the category $\mathcal{LR}(H)$ of Yetter-Drinfeld-Long bimodules, introduced by F. Panaite, F. Van Oystaeyen (2008), is isomorphic to the Yetter-Drinfeld category $^{H\otimes H^*}_{H\otimes H^*}\mathcal{YD}$ over the tensor product bialgebra $H\otimes H^*$ as monoidal categories. Moreover if $H$ is a finite-dimensional Hopf algebra with bijective antipode, the isomorphism is braided. Finally, as an application of this category isomorphism, we give two results.

Keywords: Hopf algebra; Yetter-Drinfeld-Long bimodule; braided monoidal category

Classification (MSC 2010): 16T05, 18D10

DOI: 10.21136/CMJ.2017.0666-15

Full text available as PDF.

  [1] C. Kassel: Quantum Groups. Graduate Texts in Mathematics 155, Springer, New York (1995). DOI 10.1007/978-1-4612-0783-2 | MR 1321145 | Zbl 0808.17003
  [2] F. Panaite, M. D. Staic: More examples of pseudosymmetric braided categories. J. Algebra Appl. 12 (2013), Paper No. 1250186, 21 pages. DOI 10.1142/S0219498812501861 | MR 3037261 | Zbl 1275.18018
  [3] F. Panaite, M. D. Staic, F. Van Oystaeyen: Pseudosymmetric braidings, twines and twisted algebras. J. Pure Appl. Algebra 214 (2010), 867-884. DOI 10.1016/j.jpaa.2009.08.008 | MR 2580665 | Zbl 1207.16037
  [4] F. Panaite, F. Van Oystaeyen: L-R-smash product for (quasi-)Hopf algebras. J. Algebra 309 (2007), 168-191. DOI 10.1016/j.jalgebra.2006.07.020 | MR 2301236 | Zbl 1126.16016
  [5] F. Panaite, F. Van Oystaeyen: L-R-smash biproducts, double biproducts and a braided category of Yetter-Drinfeld-Long bimodules. Rocky Mt. J. Math. 40 (2010), 2013-2024. DOI 10.1216/RMJ-2010-40-6-2013 | MR 2764235 | Zbl 1206.16021
  [6] D. E. Radford: The structure of Hopf algebras with a projection. J. Algebra 92 (1985), 322-347. DOI 10.1016/0021-8693(85)90124-3 | MR 0778452 | Zbl 0549.16003
  [7] L. Zhang: L-R smash products for bimodule algebras. Prog. Nat. Sci. 16 (2006), 580-587. DOI 10.1080/10020070612330038 | MR 2247240 | Zbl 1124.16036

Access to the full text of journal articles on this site is restricted to the subscribers of Myris Trade. To activate your access, please contact Myris Trade at
Subscribers of Springer need to access the articles on their site, which is

[Previous Article] [Next Article] [Contents of This Number] [Contents of Czechoslovak Mathematical Journal]