Czechoslovak Mathematical Journal, Vol. 57, No. 2, pp. 579-590, 2007

Exchange rings with stable range one

Huanyin Chen

Department of Mathematics, Hunan Normal University, Changsha, 410006, People's Republic of China, e-mail: chyzxl@hunnu.edu.cn

Abstract: We characterize exchange rings having stable range one. An exchange ring $R$ has stable range one if and only if for any regular $a\in R$, there exist an $e\in E(R)$ and a $u\in U(R)$ such that $a=e+u$ and $aR\cap eR=0$ if and only if for any regular $a\in R$, there exist $e\in r.ann(a^+)$ and $u\in U(R)$ such that $a=e+u$ if and only if for any $a,b\in R$, $R/aR\cong R/bR\Longrightarrow aR\cong bR$.

Keywords: exchange ring, stable range one, idempotent, unit

Classification (MSC 2000): 16E50, 16U99


Full text available as PDF (smallest), as compressed PostScript (.ps.gz) or as raw PostScript (.ps).

Access to the full text of journal articles on this site is restricted to the subscribers of Myris Trade. To activate your access, please contact Myris Trade at myris@myris.cz.
Subscribers of Springer need to access the articles on their site, which is http://www.springeronline.com/10587.


[Previous Article] [Next Article] [Contents of This Number] [Contents of Czechoslovak Mathematical Journal]