Czechoslovak Mathematical Journal, Vol. 48, No. 4, pp. 701-710, 1998

An algebraic characterization of geodetic graphs

Ladislav Nebesky

Nam. J. Palacha 2, 116 38 Praha 1, Czech Republic (Filozoficka fakulta Univerzity Karlovy)

Abstract: We say that a binary operation $*$ is associated with a (finite undirected) graph $G$ (without loops and multiple edges) if $*$ is defined on $V(G)$ and $uv\in E(G)$ if and only if $u\not= v$, $u * v=v$ and $v*u=u$ for any $u$, $v\in V(G)$. In the paper it is proved that a connected graph $G$ is geodetic if and only if there exists a binary operation associated with $G$ which fulfils a certain set of four axioms. (This characterization is obtained as an immediate consequence of a stronger result proved in the paper).

Full text available as PDF (smallest), as compressed PostScript (.ps.gz) or as raw PostScript (.ps).

Access to the full text of journal articles on this site is restricted to the subscribers of Myris Trade. To activate your access, please contact Myris Trade at
Subscribers of Springer (formerly Kluwer) need to access the articles on their site, which is

[Previous Article] [Next Article] [Contents of This Number] [Contents of Czechoslovak Mathematical Journal]